Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:
Tìm mốt của mẫu số liệu ghép nhóm này.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đây là mẫu số liệu ghép nhóm và tần số các nhóm khác nhau nên có 1 mốt
Đáp án: B.
Tần số của nhóm \(\left[ {40;60} \right)\) lớn nhất (=12) nên mốt thuộc nhóm \(\left[ {40;60} \right)\).
Đáp án: B.
a) Không thể tìm được giá trị chính xác cho mốt của mẫu số liệu gốc về thời gian xem ti vi của học sinh
b) Tần số lớn nhất là 16 nên nhóm chứa mốt là [5;10)
Ta có \(j = 2,\;{a_2} = 5,\;{m_2} = 16,\;{m_1} = 8;\;{m_3} = 4,\;h = 5.\) Do đó,
\({M_0} = 5 + \frac{{16 - 8}}{{\left( {16 - 8} \right) + \left( {16 - 4} \right)}} \times 5 = 7\).
Trong mẫu số liệu trên; các giá trị 15; 13; 16 đều xuất hiện nhiều nhất – là 3 lần.
Do đó; mốt của mẫu số liệu trên là : 15; 13; 16
Chọn D
Cỡ mẫu n = 42.
Trung vị \({M_e}\) là \(\frac{{{x_{21}} + {x_{22}}}}{2}\). Do \({x_{21}},\;{x_{22}}\) đều thuộc nhóm \(\left[ {40;60} \right)\) nên nhóm này chứa trung vị.
Đáp án: C.
Cỡ mẫu n = 42.
Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{10}} + {x_{11}}}}{2}\). Do \({x_{10}},\;{x_{11}}\) đều thuộc nhóm \(\left[ {20;40} \right)\) nên nhóm náy chứa \({Q_1}\).
Đáp án: B.
Tổng số học sinh: \(n = 8 + 10 + 16 + 24 + 13 + 7 + 4 = 82\)
• Điểm trung bình môn Toán của các học sinh lớp 11 trên là:
\(\bar x = \frac{{8.6,75 + 10.7,25 + 16.7,75 + 24.8,25 + 13.8,75 + 7.9,25 + 4.9,75}}{{82}} = 8,12\)
• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\left[ {8;8,5} \right)\).
Do đó: \({u_m} = 8;{n_{m - 1}} = 16;{n_m} = 24;{n_{m + 1}} = 13;{u_{m + 1}} - {u_m} = 8,5 - 8 = 0,5\)
Mốt của mẫu số liệu ghép nhóm là:
\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{24 - 16}}{{\left( {24 - 16} \right) + \left( {24 - 13} \right)}}.0,5 \approx 8,21\)
• Gọi \({x_1};{x_2};...;{x_{82}}\) là điểm của các học sinh lớp 11 được xếp theo thứ tự không giảm.
Ta có:
\(\begin{array}{l}{x_1},...,{x_8} \in \begin{array}{*{20}{c}}{\left[ {6,5;7} \right)}\end{array};{x_9},...,{x_{18}} \in \begin{array}{*{20}{c}}{\left[ {7;7,5} \right)}\end{array};{x_{19}},...,{x_{34}} \in \begin{array}{*{20}{c}}{\left[ {7,5;8} \right)}\end{array};{x_{35}},...,{x_{58}} \in \begin{array}{*{20}{c}}{\left[ {8;8,5} \right)}\end{array};\\{x_{59}},...,{x_{71}} \in \begin{array}{*{20}{c}}{\left[ {8,5;9} \right)}\end{array};{x_{72}},...,{x_{78}} \in \begin{array}{*{20}{c}}{\left[ {9;9,5} \right)}\end{array};{x_{79}},...,{x_{82}} \in \begin{array}{*{20}{c}}{\left[ {9,5;10} \right)}\end{array}\end{array}\)
Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{41}} + {x_{42}}} \right)\)
Ta có: \(n = 82;{n_m} = 24;C = 8 + 10 + 16 = 34;{u_m} = 8;{u_{m + 1}} = 8,5\)
Do \({x_{41}},{x_{42}} \in \begin{array}{*{20}{l}}{\left[ {8;8,5} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:
\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{\frac{{82}}{2} - 34}}{{24}}.\left( {8,5 - 8} \right) \approx 8,15\)
Tứ phân vị thứ nhất của dãy số liệu là: \({x_{21}}\).
Ta có: \(n = 82;{n_m} = 16;C = 8 + 10 = 18;{u_m} = 7,5;{u_{m + 1}} = 8\)
Do \({x_{21}} \in \begin{array}{*{20}{l}}{\left[ {7,5;8} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:
\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 7,5 + \frac{{\frac{{82}}{4} - 18}}{{16}}.\left( {8 - 7,5} \right) \approx 7,58\)
Tứ phân vị thứ ba của dãy số liệu là: \({x_{62}}\).
Ta có: \(n = 82;{n_j} = 13;C = 8 + 10 + 16 + 24 = 58;{u_j} = 8,5;{u_{j + 1}} = 9\)
Do \({x_{62}} \in \begin{array}{*{20}{l}}{\left[ {8,5;9} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:
\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 8,5 + \frac{{\frac{{3.82}}{4} - 58}}{{13}}.\left( {9 - 8,5} \right) \approx 8,63\)
Tần số lớn nhất là 31 nên nhóm chứa mốt là \(\left[ {60;80} \right).\;\)Ta có:
\(j = 4;\;\;{a_4} = 60;\;\;{m_4} = 31;\;\;{m_3} = 23;\;\;{m_5} = 29;\;\;h = 20\). Do đó,
\({M_0} = 60 + \frac{{31 - 23}}{{\left( {31 - 23} \right) + \left( {31 - 29} \right)}} \times 20 = 76\).
Ý nghĩa: Đa số các con ong có tuổi thọ là 76 ngày.
Tần số lớn nhất là 10 nên nhóm chứa mốt là [10.5;20.5]
Ta có \(j = 2,\;{a_2} = 10.5,\;{m_2} = 10,\;{m_1} = 2;\;{m_3} = 6,\;h = 10.\) Do đó,
\({M_0} = 10.5 + \frac{{10 - 2}}{{\left( {10 - 2} \right) + \left( {10 - 6} \right)}} \times 10 = 17.16\).