K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a, x-2 khác 0 suy ra x khác 2

   x-2 lớn hơn hoặc bằng 0 suy ra x lớn hơn hoặc bằng2

Nên x lớn hơn 2 

b, x+2 \(\ne\)\(\Rightarrow\)x\(\ne\)-2

   x-2    \(\ge\)\(\Rightarrow\)\(\ge\)2

Vậy x\(\ge\)2

2 tháng 7 2021

a) \(\sqrt{\frac{1}{3-2x}}\)có nghĩa <=> \(\frac{1}{3-2x}>0\Leftrightarrow3-2x>0\Leftrightarrow x>\frac{3}{2}\)

b) \(\sqrt{\frac{x+2}{x^2+1}}\)có nghĩa <=> \(\frac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)

c) \(\sqrt{\frac{x+5}{x-7}}\)có nghĩa <=> \(\frac{x+5}{x-7}\ge0\Leftrightarrow\orbr{\begin{cases}x>7\\x\le-5\end{cases}}\)

9 tháng 9 2023

Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)

      \(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)

       `<=>x > 2`

9 tháng 9 2023

hmmm....đợi cô nghĩ chút<)

 

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\) luôn xđ với mọi x

các câu còn lại tương tự

7 tháng 7 2017

??/

tui mới học lớp 7 mà

....

15 tháng 7 2019

Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)

Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)

Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)

Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)

Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:

\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)

Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)

24 tháng 6 2019

\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)

\(\Rightarrow\)Biểu thức luôn được xác định với mọi x 

\(b,\sqrt{\frac{3x+4}{x-2}}\)

\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)

\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)

Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)

25 tháng 6 2019

a,\(\sqrt{x^2-8x+18=\sqrt{x^2}-8x+16+2.}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với\(\forall x\)

\(\Rightarrow\)Biểu thức luônđược xác định với mọi x

16 tháng 7 2018

Để Giá trị của x có nghĩa thì:

\(\sqrt{x^2-5x+6}>0\) => \(x^2-5x+6>0\)

Phân tích Mẫu Thức ta có:

\(\sqrt{x^2-5x+6}=\sqrt{x^2-2x-3x+6}=\sqrt{\left(x^2-2x\right)-\left(3x-6\right)}\)

\(=\sqrt[]{x\left(x-2\right)-3\left(x-2\right)}=\sqrt{\left(x-2\right)\left(x-3\right)}\) 

Để mẫu thức khác 0 thì :

\(\left(x-2\right)\ne0\) hoặc \(\left(x-3\right)\ne0\)

\(\Leftrightarrow\) \(x\ne2\)hoặc \(x\ne3\)(1)

Để mẫu thức ko âm ( lớn hơn 0 )

*Trường hợp 1: \(x-2>0\)hoặc \(x-3>0\)

=> \(x>2\)hoặc \(x>3\)(2)

*Trường hợp 2: \(x-2< 0\)hoặc \(x-3< 0\)

=> \(x< 2\)hoặc \(x< 3\)(3)

Từ (1),(2) và (3) ta có:

=> \(x>3\) hoặc \(x< 2\)

Chúc bạn học tốt :#

16 tháng 7 2018

ĐK:  \(x^2-5x+6>0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)>0\)

TH1:  \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>3\end{cases}}\)\(\Leftrightarrow\)\(x>3\)

TH2:   \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 2\\x< 3\end{cases}}\)\(\Leftrightarrow\)\(x< 2\)

Vậy   \(\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)

24 tháng 10 2017

a) \(\sqrt{\left|x-1\right|-3}\) xác định khi

 \(\left|x-1\right|-3\ge0\)

\(\left|x-1\right|\ge3\)

\(\Rightarrow\orbr{\begin{cases}x-1\ge3\\x-1\ge-3\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge4\\x\ge-2\end{cases}}\)

vậy \(\orbr{\begin{cases}x\ge4\\x\ge-2\end{cases}}\) thì \(\sqrt{\left|x-1\right|-3}\) xác định