K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Ta có:(3x-y)\(^2\)\(\ge\)\(\forall\) x

        |x+y|\(\ge\) 0 \(\forall\)i x,y

=>(3x-y)\(^2\)+|x+y|\(\ge\)0  \(\forall\) x,y

=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y

Vậy GTNN của biểu thức B là -3

Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0

Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0

Với |x+y|=0=>x+y=0=>x=x=0

Vậy biểu thức B đạt GTNN là -3 khi x=y=0

17 tháng 7 2017

Ta có:(2x\(^2\)+3) luôn lớn hơn hoặc bằng 0 với mọi x

       =>(2x\(^2\)+3)\(^2\)  -7 luôn lớn hơn hoặc bằng -7 với mọi x

Vậy GTNN của biểu thức C là 7

Dấu "=" xảy ra khi (2x\(^2\)+3)\(^2\)=0

                         =>2x\(^2\)+3  =0

                             2x\(^2\)      =-3

                              x\(^2\)       =\(\frac{-3}{2}\)

                              x            =\(\sqrt{\left(\frac{-3}{2}\right)^2}\)  

Vậy GTNN của biểu thức C là -7 khi x=\(\sqrt{\left(\frac{-3}{2}\right)^2}\)

17 tháng 7 2017

GTNN : ta co : (2x2+3)2 luôn lớn hơn hoặc bằng 0

               => để C đạt giá trị nhỏ nhất thì (2x2+3)2 =0

                  => C =0-7=-7

4 tháng 11 2021

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)

4 tháng 11 2021

cảm ơn nhé

 

16 tháng 7 2017

đề bài thiếu

17 tháng 7 2017

ukm, đúng rùi mình viết thiếu 

Tìm GTLN hoặc GTNN :

B=(3x-y)^2+|x+y|-3

12 tháng 7 2018

\(\left(x-2\right)^3+\left(5-2x\right)^3=0\)

\(\Leftrightarrow\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-\left(5x-4x^2-10+4x\right)+25-20x+4x^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-5x+4x^2+10-4x+25-20x+4x^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(9x^2-33x+39\right)=0\)

Phân tích  tiếp nhé

12 tháng 7 2018

Bạn ơi, mình chỉ làm đc đến đây rồi ko biết làm tiếp ntn đó

16 tháng 7 2015

ĐTV sai òi

GTNN cảu P = 0 tại y = 2012 ; x = 4018 

GTNN của P = 2015 khi y= 1 ; x = 2

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3