B=10/5+20/10+30/15+................+100/50
Tìm B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 90 – ( 30 – 20) = 90 – 10
= 80
90 – 30 – 20 = 60 - 20
= 40
b) 100 – (60 + 10) = 100 – 70
= 30
100 - 60 + 10 = 40 + 10
= 50
c) 135 – (30 + 5) = 135 – 35
= 100
135 – 30 – 5 = 105 – 5
= 100
d) 70 + (40 – 10) = 70 + 30
= 100
70 + 40 – 10 = 110 -10
= 100
a) \(A=1+2+2^2+2^3+...+2^{100}\) \(B=2^{201}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{201}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{201}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A-A=2^{101}-1\)
\(A=2^{201}-1\)
Ta có 2201 > 2201 - 1 => B > A => 2201 > 1 + 2 + 22 + 23 +...+ 1100
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1< 2^{101}\)
A.Ta có \(10^{30}\)=\(\left(10^3\right)\)= \(1000^{10}\)
\(2^{100}\)=\(\left(2^{10}\right)\)\(^{10}\)=\(1024^{10}\)
Vì \(1000^{10}\)<\(1024^{10}\)nên \(10^{30}\)<\(2^{100}\)
B.Ta có \(5^{40}\)=\(5^{4.10}\)=(\(5^4\))\(^{^{ }10}\)=\(625^{10}\)
Vì \(625^{10}\)>\(620^{10}\)nên\(5^{40}\)>\(620^{10}\)
C.\(10^{20}\)= \(10^{2.10}\)= \(\left(10^2\right)\)\(^{10}\)=\(100^{10}\)
Vì \(100^{10}\)>\(90^{10}\) nên \(10^{20}\)>\(90^{10}\)
a; \(\dfrac{9}{27}\) + \(\dfrac{7}{-49}\)
= \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\)
= \(\dfrac{7}{21}\) - \(\dfrac{3}{21}\)
= \(\dfrac{4}{21}\)
b; - \(\dfrac{12}{10}\) + \(\dfrac{-25}{30}\)
= - \(\dfrac{6}{5}\) - \(\dfrac{5}{6}\)
= -\(\dfrac{36}{30}\) - \(\dfrac{25}{30}\)
= \(\dfrac{-61}{30}\)
c; \(\dfrac{-20}{35}\) + \(\dfrac{-16}{-24}\)
= - \(\dfrac{4}{7}\) + \(\dfrac{2}{3}\)
= - \(\dfrac{12}{21}\) + \(\dfrac{14}{21}\)
= \(\dfrac{2}{21}\)
d; - \(\dfrac{21}{77}\) + \(\dfrac{10}{-35}\)
= - \(\dfrac{3}{11}\) - \(\dfrac{2}{7}\)
= - \(\dfrac{21}{77}\) - \(\dfrac{22}{77}\)
= - \(\dfrac{43}{77}\)
\(B=\frac{10}{5}+\frac{20}{10}+\frac{30}{15}+...+\frac{100}{50}\)
\(B=2+2+2+...+2\)
Số số hạng có là : ( 100 - 10) : 10 + 1 = 10
\(B=10\cdot2=20\)