K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    \({u_9} = {u_1}.{q^{9 - 1}} = \left( { - 5} \right){.2^8} =  - 1280\)

b)    Ta có: \( - 320 = \left( { - 5} \right){.2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 64 \Leftrightarrow n = 7\)

 \( - 320\) là số hạng thứ 7 của cấp số nhân

c)    Ta có: \(160 = \left( { - 5} \right){.2^{n - 1}} \Leftrightarrow {2^{n - 1}} =  - {2^5}\)

 160 không là số hạng của cấp số nhân

17 tháng 9 2023

1) \(\left(u_n\right):\left\{{}\begin{matrix}u_1=-7\\q=2\end{matrix}\right.\)

\(u_5=-7.q^4=-7.16=-112\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-7.2^{m-1}=-3584\)

\(\Leftrightarrow2^{m-1}=512=2^9\)

\(\Leftrightarrow m-1=9\)

\(\Leftrightarrow m=10\)

Vậy số \(-3584\) là số thứ \(10\) của cấp số nhân

17 tháng 9 2023

\(\left(u_n\right):\left\{{}\begin{matrix}u_1=-3\\q=-2\end{matrix}\right.\)

\(u_{10}=-u_1.q^9=-3.\left(-2\right)^9=1536\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-3.\left(-2\right)^{m-1}=-3072\)

\(\Leftrightarrow\left(-2\right)^{m-1}=1024=\left(-2\right)^{10}\)

\(\Leftrightarrow m-1=10\)

\(\Leftrightarrow m=11\)

Vậy số \(-3072\) là số thứ \(11\) của cấp số nhân.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

-        Số hạng thứ nhất: \({u_1}\)

-        Số hạng thứ hai: \({u_2} = {u_1}.q\)

-        Số hạng thứ ba: \({u_3} = {u_2}.q = \left( {{u_1}.q} \right).q = {u_1}.{q^2}\)

-        Số hạng thứ tư: \({u_4} = {u_3}.q = \left( {{u_1}.{q^2}} \right).q = {u_1}.{q^3}\)

-        Số hạng thứ năm: \({u_5} = {u_4}.q = \left( {{u_1}.{q^3}} \right).q = {u_1}.{q^4}\)

b)    Dự đoán công thức tính: \({u_n} = {u_1}.{q^{n - 1}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_3} = {u_1}.{q^2} \Leftrightarrow \left( {\frac{{27}}{4}} \right) = 3.{q^2} \Leftrightarrow q = \frac{3}{2}\)

Năm số hạng đầu của cấp số nhân: \(3;\frac{9}{2};\frac{{27}}{4};\frac{{81}}{8};\frac{{243}}{{16}}\)

b)    Tổng 10 số hạng đầu:

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{3\left( {1 - {{\left( {\frac{3}{2}} \right)}^{10}}} \right)}}{{1 - \frac{3}{2}}} = \frac{{3.\frac{{ - 58025}}{{1024}}}}{{1 - \frac{3}{2}}} = \frac{{ - 174075}}{{1024}}.\left( { - 2} \right) = \frac{{174075}}{{512}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_2}.q = {u_1}.{q^2}\)

\({u_4} = {u_3}.q = {u_1}.{q^3}\)

\({u_5} = {u_4}.q = {u_1}.{q^4}\)

b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$

$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$

$\Leftrightarrow q=\pm 2$

2. 

$u_{2019}=q^{2018}u_1=2.3^{2018}$

1:

\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)

2:

\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)

\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)

\(=3^{13}-3\)

25 tháng 5 2017

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.