K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

31 tháng 10 2017

BAI 1

ta co n+6 chia het  cho n 

ma n chia het cho n 

suy ra 6 chia het cho n 

ma n la mot so tu nhien nen 

ta co n thuoc U(6)=1,2,3,6

vay n bang 1,2,3,6

bai 2

(2n-1).(y+3)=12

suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2

neu 2n-1 =1 suy ra n=1

thi y+3=12 suy ra y=9

neu 2n-1=12 suy ra n=11/2(ko thoa man )

neu 2n-1=3 suy ra n=2

thi y+3=4 suy ra y=1

neu 2n-1=4 ruy ra n=5/2( ko thoa man )

neu 2n-1=6 suy ra n=7/2( ko thoa man )

neu 2n-1=2 suy ra n=3/2 ( ko thoa man )

vay cac cap so n :y can tim la (2;1),(1;9)

31 tháng 10 2017

n thuoc  boi cua 6

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

27 tháng 4 2015

Bài 1 :

(2x + 1)(y - 5) = 12 

=> 2x + 1 \(\in\)Ư(12)

Vì x \(\ge\)0 => 2x + 1 \(\ge\)1

Mà 2x + 1 chia 2 dư 1

=> 2x + 1 \(\in\){1; 3}.

Ta có bảng sau:

2x + 113
2x02
x01
y - 5124
y179

Vậy : (x; y) \(\in\){(0; 17); (1; 9)}

27 tháng 4 2015

Bài 2:

4n - 5 chia hết cho 2n - 1

=> 4n - 2 - 3 chia hết cho 2n - 1

=> 2(2n - 1) - 3 chia hết cho 2n - 1

Mà 2(2n - 1) chia hết cho 2n - 1

=> 3 chia hết cho 2n - 1 = > 2n - 1 \(\in\)Ư(3) = {1; 3; -1; -3}

Mà n \(\ge\) 0 => 2n - 1 \(\ge\)1 => 2n - 1 \(\in\){-1; 1; 3}

Ta có bàng sau:

2n - 1-113
2n024
n012

Vậy : n \(\in\){0; 1; 2}

13 tháng 10 2021

\(2n+1⋮n-1\)

\(\Leftrightarrow n-1\in\left\{-1;1;3\right\}\)

hay \(n\in\left\{0;2;4\right\}\)

25 tháng 10 2016

n+3 chia hết cho n+1

=>n+1+2 chia hết cho n+1

=>2 chia hết cho n+1

=>n+1 \(\in\)Ư(2)={1;2}

n+1=1 => n=0

n+1=2 => n=1

Vậy n={0;1}

25 tháng 10 2016

   Ta có : n + 3 = ( n + 1 ) + 2

                          ( n + 1 ) + 2 chia hết cho n + 1 vì : n + 1 chia hết cho n + 1

                           => 2 chia hết cho n + 1

                           => n + 1 thuộc { 1 ; 2 }

Nếu n + 1 = 1 thì n = 1 - 1 = 0 ( thỏa mãn yêu cầu bài )

Nếu n + 1 = 2 thì n = 2 - 1 = 1 ( thỏa mãn yêu cầu bài )

Vậy n = 0 và 1.