K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập giá trị của hàm số \(y = \cos x\)là \(\left[ { - 1;1} \right]\)

b) Trục tung là trục đối xứng của hàm số \(y = \cos x\).

Như vậy hàm số \(y = \cos x\)là hàm số chẵn.

c) Bằng cách dịch chuyển đồ thị \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị có hàm số \(y = \cos x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy hàm số \(y = \cos x\) là hàm số tuần hoàn

d)  Hàm số \(y = \cos x\)đồng biến trên mỗi khoảng \(\left( { - \pi  + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi  + k2\pi } \right)\) với \(k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)

b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.

Như vậy hàm số \(y = \sin x\) là hàm số lẻ.

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy, hàm số \(y = \sin x\) có tuần hoàn .

d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Tập giá trị của hàm số \(y = \cot x\)là R

b)     Gốc tọa độ là tâm đối xứng của đồ thị hàm số

Hàm số \(y = \cot x\)là hàm số lẻ

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\)

Hàm số \(y = \cot x\) có tuần hoàn

d)     Hàm số \(y = \cot x\)nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right),k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Tập giá trị của hàm số \(y = \tan x\) là R

b)     Gốc tọa độ là tâm đối xứng của đồ thị hàm số

Như vậy, hàm số \(y = \tan x\)là hàm số lẻ

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\)

Như vậy, hàm số \(y = \tan x\) có tuần hoàn

d)     Hàm số \(y = \tan x\)đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\) với \(k \in Z\)

14 tháng 11 2021

Đáp án :

B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng.

8 tháng 7 2018

a) + Hàm số y = cos x có chu kì 2π.

Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.

⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

Từ đó suy ra

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

b. y = f(x) = cos 2x

⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.

Và 1 + cos22x > 0; ∀ x

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11 luôn xác định với mọi x ∈ R.

20 tháng 6 2017

a: Thay x=0 và y=2 vào (d), ta được: 

a=2

b: Thay x=-1 và y=0 vào (d), ta được:

\(-\left(a-2\right)+a=0\)

\(\Leftrightarrow2=0\)(vô lý)