\(D=1+2^2+2^4+...+2^{2n}\\ S=1+a^2+a^4+...+a^{2n}\\ S=a+a^3+...a^{2n+1}\)
giúp mình cái nha :D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=a+a^3+...+a^{2n+1}\)
\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)
\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)
\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)
\(S_1=1+a^2+...+a^{2n}\)
\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)
\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)
\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)
a)1+2+3+...+n
=[(n-1):1+1].(n+1):2
=n.( n+1)/2
b) {[(2n-1)-1]:2+1}. [(2n-1)+1]:2
=n.n=n2
a) 1+2+3+...+n
= [(n-1):1+1].(n+1):2
= n.( n+1)/2
b) {[(2n-1)-1]:2+1}. [(2n-1)+1]:2
= n.n = n2
nhân D vs 2^2 rồi lấy 2^2 D - D vậy là xong
nhân S vs a^2