Gieo một con xúc xắc cân đối. Tính xác suất của các biến cố sau
a) A:''Gieo được mặt có số chấm bằng 4''
b) B:''Gieo được mặt có số chấm chia hết cho 5''
c) C:''Gieo được mặt có số chấm là tròn chục''
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số kết quả có thể xảy ra là 6 vì con xúc xắc có 6 mặt.
Số kết quả thuận lời của \(A\) là 2 (ứng với mặt 3 chấm và mặt 6 châm).
Xác suất của biến cố \(A\) là:
\(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).
a) Xác suất của biến cố B là \(\dfrac{1}{6}\), vì có 6 mặt trên xúc xắc và chỉ có duy nhất một mặt là mặt 6 chấm.
b)
+ Trong trường hợp biến cố A xảy ra, xác suất của biến cố B không thay đổi. Vì hai biến cố này là độc lập, kết quả của biến cố A không ảnh hưởng đến biến cố B.
+ Trong trường hợp biến cố A không xảy ra, tức là An không gieo được mặt 6 chấm, xác suất của biến cố B là \(\dfrac{1}{6}\)
$HaNa$
a) Theo biến cố A ta có các mặt có thể ra là 6 chấm nên xác suất ra là: P(A) = \(\frac{1}{6}\)
b) Theo biến cố B ta có các mặt thỏa mãn nhỏ hơn 7 là tất cả các mặt của xúc xắc nên B là biến cố chắc chắn. Do đó, P(B) = 1
tham khảo
A là biến cố "Có 1 số chấm chia hết cho 2, 1 số chấm chia hết cho 3, và không xuất hiện 6 chấm", \(P\left(A\right)=\dfrac{4}{36}=\dfrac{1}{9}\)
B là biến cố "Có ít nhất 1 trong 2 con xúc xắc xuất hiện chấm 6", \(P\left(B\right)=\dfrac{11}{36}\)
\(A\cup B\) là biến cố "Tích số chấm xuất hiện trên 2 con xúc xắc chia hết cho 6".
A và B xung khắc nên \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{5}{12}\)Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố A là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố B là biến cố không thể nên biến cố có xác suất là 0.
- Biến cố C là biến cố ngẫu nhiên
Do có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 6 là \(\dfrac{1}{6}\)
Chọn B
Lời giải.
Số phần tử của không gian mẫu là Ω = 6 . 6 = 36
Gọi A là biến cố "Số chấm trên mặt hai lần gieo có tổng bằng 8".
Gọi số chấm trên mặt khi gieo lần một là x
số chấm trên mặt khi gieo lần hai là y
Theo bài ra, ta có
Khi đó số kết quả thuận lợi của biến cố là Ω A = 5
Vậy xác suất cần tính P ( A ) = 5 36
a: A={2}
omega={1;2;3;4;5;6}
=>P(A)=1/6
b: B={2;4;6}
=>n(B)=3
=>P(B)=3/6=1/2
c: C={3;4;5;6}
=>n(C)=4
=>P(C)=4/6=2/3
Biến cố A có xác suất xảy ra là \(\frac{1}{6}\)và biến cố B có xác suất xảy ra là \(\frac{1}{6}\)
a) Biến cố A : vì trong xúc xắc có 1 mặt có 4 chấm trên tổng 6 mặt nên xắc suất gieo ra mặt 4 chấm là \(\dfrac{1}{6}\)
b) Biến cố B : vì trong các mặt chỉ có 5 chấm là chia hết cho 5 nên xác suất gieo ra mặt 5 chấm là là \(\dfrac{1}{6}\)
c) Biến cố C : vì số chấm trong mỗi mặt của xúc xắc là từ 1 đến 6 chấm nên biến cố C là biến cố không thể. Do đó, xác suất xảy ra biến cố C là 0.