1> Cho \(\Delta ABC\)vuông tại A và \(\widehat{B}>\widehat{C}\).Ở trong góc \(\widehat{ABC}\)vẽ tia Bx tạo với BA một góc \(\widehat{ABx}=\widehat{C}\), tia Bx cắt AC tại M. Gọi E là hình chiếu của M trên BC. Phân giác của \(\widehat{MEC}\)cắt MC tại D. Biết \(\frac{MD}{DC}=\frac{3}{4}\)và MC=15.
a, Tính ME, CE
b, Chứng minh: \(AB^2=AM.AC\)
2>Cho \(\Delta ABC\)cân tại B. Qua đỉnh B vẽ một đường thẳng cắt cạnh AC tại D sao cho \(\widehat{BDC}=60^o\). Tính độ dài AB biết AD=3, DC=8