Cho tam giác ABC có BC = 1cm, AB = 4cm. Tìm độ dài cạnh AC, biết rằng độ dài này là một số nguyên xăngtimét.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức tam giác và hệ quả ta có:
AB - AC < BC < AB + AC (1)
Thay AB = 4cm, AC = 1cm vào (1) ta có:
4 - 1 < BC < 4 + 1 ⇔ 3 < BC < 5
Vì độ dài cạnh BC là một số nguyên nên BC = 4cm.
Xét ΔABC có AB-AC<BC<AB+AC
=>4-1<BC<4+1
=>3<BC<5
=>BC=4(cm)
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Thay BC = 1cm, AC = 7cm, ta được:
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên (cm) thỏa mãn (1) nên AB = 7cm
Do đó ΔABC cân tại A vì AB = AC = 7cm.
* Cách dựng tam giác ABC
- Vẽ BC = 1cm
- Dựng đường tròn tâm B bán kính 7cm ; đường tròn tâm C bán kính 7cm. Hai đường tròn cắt nhau tại A.
Theo bất đẳng thức tam giác ABC có :
Có AC–BC<AB<AC+BC
có 7–1<AB<7+1
6<AB<8 (1)
Vì độ dài AB là số nguyên thỏa mãn với (1) nên AB = 7 cm
Do đó ∆ ABC là tam giác cân vì nó cân tại a và có AB= AC = 7 cm
Gọi độ dài cạnh BC là a .
Theo bất đẳng thức tam giác ta có :
4 < a + 1 ; 1 > 4 - a
=> a = 4 ( cm )
Vậy BC = 4cm
Gọi độ dài cạnh AC là x (x>0). Theo bất đẳng thức tam giác ta có:
4 − 1 < x < 4 + 1 ⇔ 3 < x < 5 Vì x là số nguyên nên x = 4. Vậy độ dài cạnh AC = 4cm
Chọn đáp án D.
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
4 – 1 < CA < 4 + 1
3 < CA < 5
Mà CA là số nguyên
CA = 4 cm.
Vậy CA = 4 cm.