Cho hình chóp SABCD có đáy ABCD là hình bình hành.
a) Xác định giao tuyến của (SAB) và (SCD); (SAD) và (SBC).
b) Gọi M\(\in SC\), tìm giao tuyến của (ABM) và (SCD).
c) Gọi N\(\in SB\), tìm giao tuyến của (SAB) và (NCD).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (SAB) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
c: \(N\in SB\subset\left(SAB\right);N\in\left(NCD\right)\)
=>\(N\in\left(SAB\right)\cap\left(NCD\right)\)
Xét (SAB) và (NCD) có
\(N\in\left(SAB\right)\cap\left(NCD\right)\)
AB//CD
Do đó: (SAB) giao (NCD)=ab, ab đi qua N và ab//CD//AB