Một tam giác có độ dài ba cạnh tỉ lệ với 3; 4; 5 và có chu vi là 60 cm. Tính độ dài các cạnh của tam giác đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
a) gọi 3 cạnh của tam giác lần lượt là a;b;c ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c =60
áp dụng tích chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
\(\frac{a}{3}=5=>a=15\)
\(\frac{b}{4}=5=>b=20\)
\(\frac{c}{5}=5=>c=25\)
a, Gọi 3 cạnh của tam giác lần lượt là x, y, t
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\)và \(x+y+t=60\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}=\frac{x+y+t}{3+4+5}=\frac{60}{2}=5\)
\(\frac{x}{3}=5\Rightarrow a=15\)
\(\frac{y}{4}=5\Rightarrow a=20\)
\(\frac{t}{5}=5\Rightarrow a=25\)
Gọi độ dài 3 cạnh là a,b,c; 3 chiều cao tương ứng là x,y,z .Diện tích là S
Ta có :\(a=\frac{2S}{x};b=\frac{2S}{y};c=\frac{2S}{z}\)
Mà \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
\(\Rightarrow\frac{2S}{4x}=\frac{2S}{5y}=\frac{2S}{6z}\)
\(\Rightarrow4x=5y=6z\)
\(\Rightarrow\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Vậy 3 chiều cao tương ứng tỉ lệ với 15, 12, 10
Gọi độ dài 3 cạnh lần lượt là a,b,c (a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9\\ \dfrac{b}{4}=3\Rightarrow b=12\\ \dfrac{c}{5}=3\Rightarrow c=15\)
Vậy độ dài 3 cạnh tam giác lần lượt là 9, 12, 15 cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
Do đó: a=9; b=12; c=15
Gọi độ dài 3 cạnh của tam giác đó là x;y;z (x;y;z >0; x:y:z=2:3:4 ) ; ba chiều cao tương ứng là a;b;c
Đặt x = 2*t ; y = 3*t ; z = a*t
Gọi S là diện tích tam giác đó
2S = x*a = y*b = z*c
=>a*2*t = b*3*t = c*4*t
=>2*a = 3*b = 4*c
=> a/6 = b/4 = c/3
Vậy ba chiều cao tương ứng tỉ lệ với 6;4;3
Xem trong câu hỏi tương tự
Gọi 3 cạnh của tam giác lần lượt là \(a, b, c ( cm) (a,b,c > 0)\)
Theo đề bài 3 cạnh của tam giác tỉ lệ với 3, 4, 5 nên ta có tỉ số \(a : b : c = 3 : 4 : 5.\)
Và chu vi tam giác là 60cm nên ta có:\( a + b + c = 60.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5} = \dfrac{{a + b + c}}{{12}} = \dfrac{{60}}{{12}} = 5\)
\( \Rightarrow a = 3.5=15 ; b = 4.5=20 ; c = 5.5=25.\)
Vậy 3 cạnh của tam giác có độ dài là \(15cm, 20cm, 25cm.\)