Hãy thay mỗi ? bằng kí hiệu \( \in \) hoặc \( \notin \) để có phát biểu đúng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn kí hiệu \( \in \) hoặc \( \notin \) thay cho dấu ? trong mỗi câu sau để được các kết luận đúng.
a) 6\( \in \)Ư(48); b) 12 \( \notin \)Ư(30);
c) 7\( \in \) Ư(42); d) 18\( \notin \)B(4);
e) 28\( \in \)B(7); g)36\( \in \)B(12).
a) \(15 \in \mathbb{N}\)
b) \(10,5 \notin {\mathbb{N}^*}\)
c) \(\frac{7}{9} \notin \mathbb{N}\)
d) \(100 \in \mathbb{N}\)
\(\begin{array}{l} - 7 \notin \mathbb{N};\,\,\,\,\,\,\, - 17 \in \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\, - 38 \in Q\\\frac{4}{5} \notin \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\,\frac{4}{5} \in \mathbb{Q};\,\,\,\,\,\,\,\,\,\,\,\,\,\,0,25 \notin \mathbb{Z};\,\,\,\,\,3,25 \in Q\end{array}\)
\(-7\notin N;-17\in Z;-38\in Q;\dfrac{4}{5}\notin Q\)
\(\dfrac{4}{5}\in Q;0,25\notin Z;3,25\in Q\)
Phần tử a thuộc tập hợp A và không thuộc tập hợp B nên ta kí hiệu:\(a \in A;a \notin B\)
Tương tự với các phần tử khác:
\(b \in A;b \in B\);
\(x \in A;x \notin B\)
\(u \notin A;u \in B\)
a) \(\sqrt 3 \in \mathbb{Q}\) sai.
Sửa lại: \(\sqrt 3 \notin \mathbb{Q}\)
b) \(\sqrt 3 \in \mathbb{R}\) đúng.
c) \(\frac{2}{3} \notin \mathbb{R}\) sai.
Sửa lại: \(\frac{2}{3} \in \mathbb{R}\)
d) \( - 9 \in \mathbb{R}\) đúng.
Tập hợp D = {6; 7; 8; 9; 10; 11}
Như vậy, \(5 \notin D,\,\,\,\,\,7 \in D,\,\,\,\,\,17 \notin D,\,\,\,\,\,\,0 \notin D,\,\,\,\,\,\,\,\,10 \in D\)
a) 4 ƯC (12, 18); b) 6 ∈ ƯC (12, 18);
c) 2 ∈ ƯC (4, 6, 8); d) 4 ƯC (4, 6, 8);
e) 80 BC (20, 30); g) 60 ∈ BC (20, 30);
h) 12 BC (4, 6, 8); i) 24 ∈ BC (4, 6, 8)
Bài giải:
a) 4 ƯC (12, 18); b) 6 ∈ ƯC (12, 18);
c) 2 ∈ ƯC (4, 6, 8); d) 4 ƯC (4, 6, 8);
e) 80 BC (20, 30); g) 60 ∈ BC (20, 30);
h) 12 BC (4, 6, 8); i) 24 ∈ BC (4, 6, 8)
a) A là tập hợp các số tự nhiên nhỏ hơn 5, khi đó \(0 \in A,2 \in A,3 \in A.\)
B là tập hợp các nghiệm thực của phương trình \({x^2} - 3x + 2 = 0\), khi đó \(1 \in B,2 \in B.\)
C là tập hợp các thứ trong tuần, khi đó chủ nhật \( \in C,\) thứ năm \( \in C.\)
b)
\(\begin{array}{l}0 \in \mathbb{N},\;2 \in \mathbb{N}, - 5 \notin \mathbb{N},\;\frac{2}{3} \notin \mathbb{N}.\\0 \in \mathbb{Z},\; - 5 \in \mathbb{Z},\frac{2}{3} \notin \mathbb{Z},\sqrt 2 \; \notin \mathbb{Z}.\\0 \in \mathbb{Q},\;\frac{2}{3} \in \mathbb{Q},\sqrt 2 \notin \mathbb{Q},\;\pi \notin \mathbb{Q}.\\\frac{2}{3} \in \mathbb{R},\;\sqrt 2 \in \mathbb{R},e \notin \mathbb{R},\;\pi \notin \mathbb{R}.\end{array}\)
\(\begin{array}{l}5 \in \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2 \in \mathbb{Q};\,\,\,\,\,\,\,\,\,\,\,\,\,\sqrt 2 \notin \mathbb{Q};\\\frac{3}{5} \in \mathbb{Q};\,\,\,\,\,\,\,\,\,\,\,\,2,31\left( {45} \right) \notin I\,\,\,\,\,\,7,62\left( {38} \right) \in \mathbb{R};\,\,\,\,0 \notin I\end{array}\)
\(5\in Z\) (do 5 có thể viết ở dạng không ở thành phần phân số);
\(-2\in Q\) (do \(-2\) có thể viết ở dạng phân số có tử số và mẫu số là các số nguyên: \(-2=\dfrac{-2}{1}\));
\(\sqrt{2}\notin Q\) (do \(\sqrt{2}\) không thể viết được ở dạng phân số);
\(\dfrac{3}{5}\in Q\) (dạng phân số có tử số và mẫu số là số nguyên);
\(2,31\left(45\right)\notin I\) (do là số thập phân vô hạn tuần hoàn, có thể biểu diễn ở dạng số hữu tỉ \(\dfrac{1273}{550}\))
\(7,62\left(38\right)\in R\) (do là số thập phân vô hạn tuần hoàn, hay là số hữu tỉ, cũng là số thực)
\(0\notin I\) (do 0 viết được ở dạng phân số, hay là số hữu tỉ)