K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOAC cân tại O

mà OD là đường cao

nên OD là phân giác của góc AOC

Xét ΔOAD và ΔOCD có

OA=OC

góc AOD=góc COD
OD chung

Do đó: ΔOAD=ΔOCD

=>góc OCD=90 độ

=>DC là tiếp tuyến của (O)

b: Xét ΔDCE và ΔDBC có

góc DCE=góc DBC

góc CDE chung

Do đó: ΔDCE đồng dạng với ΔDBC

=>DC/DB=DE/DC

=>DC^2=DB*DE

3 tháng 1 2021

câu c đề j z

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CA⊥CB

mà CA⊥OH

nên OH//BC

b: Xét (O) có

OH là một phần đường kính

AC là dây

OH⊥AC tại H

Do đó: H là trung điểm của AC

Xét ΔMAC có 

MH là đường trung tuyến

MH là đường cao

Do đó: ΔMAC cân tại M

Xét ΔOAM và ΔOCM có

OA=OC

MA=MC

OM chung

Do đó:ΔOAM=ΔOCM

Suy ra: \(\widehat{OAM}=\widehat{OCM}=90^0\)

hay MA là tiếp tuyến của (O)

30 tháng 12 2020

a) Gọi N là trung điểm của OC

Ta có: ΔOHC vuông tại H(CH⊥AB tại H)

mà HN là đường trung tuyến ứng với cạnh huyền OC(N là trung điểm của OC)

nên \(HN=\dfrac{OC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(ON=CN=\dfrac{OC}{2}\)(N là trung điểm của OC)

nên HN=ON=CN(1)

Ta có: ΔOCI vuông tại I(OI⊥AC tại I)

mà IN là đường trung tuyến ứng với cạnh huyền OC(N là trung điểm của OC)

nên \(IN=\dfrac{OC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CN=ON=\dfrac{CO}{2}\)(N là trung điểm của CO)

nên IN=CN=ON(2)

Từ (1) và (2) suy ra NI=NO=NC=NH

hay I,O,C,H cùng thuộc một đường tròn(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAO vuông tại A có AI là đường cao ứng với cạnh huyền OM, ta được:

\(OI\cdot OM=OA^2\)

mà OA=R(A∈(O;R))

nên \(OI\cdot OM=R^2\)(đpcm)

Vì OM=2R và R=6cm nên \(OM=2\cdot6cm=12cm\)

Thay OM=12cm và R=6cm vào biểu thức \(OI\cdot OM=R^2\), ta được:

\(OI\cdot12=6^2=36\)

hay OI=3cm

Vậy: Khi OM=2R và R=6cm thì OI=3cm

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)