cho f(x)=x^99+x^88+...+x^11+x và g(x)=x^9+x^8+...+x+1.CMR: f(x) chia hết cho g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ko sai đâu bn ơi
nhiều người đề cx như vậy mà
bn lấy chứng cứ đâu mà bảo sai
có khi bn lm sai nên mới bảo đề sai ý
bn thử lm cho mk xem cái

Sửa lại đề bài nhé . \(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
Xét hiệu \(f\left(x\right)-g\left(x\right)=x^9\left(x^{90}-1\right)+x^8\left(x^{80}-1\right)+x^7\left(x^{70}-1\right)+...+x\left(x^{10}-1\right)\)
\(=x^9\left[\left(x^{10}\right)^9-1\right]+x^8\left[\left(x^{10}\right)^8-1\right]+x^7\left[\left(x^{10}\right)^7-1\right]+...+x\left(x^{10}-1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮\left(x^{10}-1\right)\)
Mà \(x^{10}-1=\left(x-1\right)\left(x^9+x^8+x^7+...+x+1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮g\left(x\right)\Rightarrow f\left(x\right)⋮g\left(x\right)\)
Chúc bạn học tốt

f(x) = x99 + x88 + x77 + ... + x11 + 1
=> f(x) = ( x9 )11 + ( x8 )11 + ( x7 )11 + ... + x11 + 111
Lại có : ( x9 )11 là bội của x9
( x8 )11 là bội cuả x8
.................................
x11 là bội của x
111 là bội của 1
Suy ra ( x9 )11 + ( x8 )11 + ... + x11 + 111 là bội của x9 + x8 + ... + x + 1
Hay f(x) chia hết cho g(x)
Sai mất rồi bạn ơi, ví dụ như (4+9):(2+3), 4 là bội của 2, 9 là bội của 3 mà (4+9) đâu chia hết cho (2+3) đâu....

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=2019^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^3+b^3+c^3\)
\(2019⋮3\Rightarrow2019^3⋮3\left(1\right)\)
\(3⋮3;a,b,c\in Z\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮3\left(2\right)\)
từ (1) và (2) \(\Rightarrow a^3+b^3+c^3⋮3\)