Chứng minh : 1993 - 1939 chia hết cho 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : 24^1993 + 14^1993
= (24^1993-5^1993)+(5^1993+14^1993)
Áp dụng tính chất a^n-b^n chia hết cho a,b với n,a,b thuộc N và a^2+b^n chia hết cho a+b với a,b lẻ thì:
24^1993-5^1993 chia hết cho 24-5=19
5^1993+14^1993 chia hết cho 5+14=19
=> 24^1993 + 14^1993 chia hết cho 19
Tk mk nha
Ta có: \(24^{1993}+14^{1993}\)
\(=\left(24+14\right)\left(24^{1992}-24^{1991}.14+...+14^{1992}\right)\)
\(=28\left(24^{1992}-24^{1991}.14+...+14^{1992}\right)\)
\(=19.2.\left(24^{1992}-24^{1991}.14+...+14^{1992}\right)\)chia hết cho 19
\(\Rightarrow dpcm\)
\(A=10^{1991}.\left(1+10+10^2+10^3\right)+1238=1111.10^{1991}+1238\)
\(\left\{{}\begin{matrix}10⋮2\\1238⋮2\end{matrix}\right.\) \(\Rightarrow A⋮2\)
\(10\equiv1\left(mod9\right)\Rightarrow10^{1991}\equiv1\left(mod9\right)\)
Và \(1111\equiv4\left(mod9\right)\Rightarrow1111.10^{1991}\equiv4\left(mod9\right)\)
\(1238\equiv5\left(mod9\right)\)
\(\Rightarrow1111.10^{1991}+1238\equiv4+5\left(mod9\right)\)
Do \(4+5⋮9\Rightarrow A⋮9\)
Mà 2 và 9 nguyên tố cùng nhau \(\Rightarrow A⋮19\)
\(1111.10^{1991}=100.1111.10^{1989}⋮4\) do 100 chia hết cho 4
Và \(1238\) chia hết cho 2 mà ko chia hết cho 4
\(\Rightarrow A\) chia hết cho 2 mà ko chia hết cho 4
\(\Rightarrow\) A không phải là số chính phương
Bạn chia ra hai trường hợp : n lẻ hoặc chẵn
Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2
Trường hợp còn lại tương tự , mình chỉ gợi ý thôi bạn tự làm nha .
Bạn chia ra hai trường hợp : n là số lẻ hoặc chẵn
Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2
Trường hợp còn lại tương tự , mình ko chắc lắm nhưng chúc bn giải đc bài còn lại!!
người đó là cái bạn Nguyễn Phương Anh đúng không Nhật Minh
Bạn đó nhờ mk ,mk nhờ cả anh Tú r mà ko giải đc
Em đã được học nguyên lí Dirichlet chưa?
Đề của em bị thiếu nhé.