do cac ban chung minh moi tam giac deu can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N
a) Xét \(\Delta ABC\) có AM = AN (gt)
\(\Rightarrow\)\(\Delta AMN\) cân tại A (t/c)
mà \(\widehat{A} = 60^0\)(Tg ABC đều)
\(\Rightarrow\)\(\Delta AMN \) đều
b) Ta có:
\(\widehat{B} = 60^0\)
\(\widehat{AMN} = 60^0\)
mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)MN // BC
a) Vì \(\Delta ABC\) đều nên \(\widehat{MAN}=60^o\) (1)
Vì \(AM=AN\Rightarrow\Delta AMN\) cân tại A (2)
Từ (1) và (2) suy ra \(\Delta AMN\) đều.
b) Do \(\Delta ABC\) đều \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Áp dụng t/c tổng 3 góc trog 1 t/g ta có:
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Rightarrow2\widehat{ABC}=180^o-\widehat{BAC}\)
\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(3\right)\)
Do \(\Delta AMN\) cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Áp dụng t/c tổng 3 góc trog 1 t/g ta có:
\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)
\(\Rightarrow2\widehat{AMN}=180^o-\widehat{BAC}\)
\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{ABC}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị nên MN // BC.
tu ve hinh :
xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)
AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)
=> tamgiac AMB = tamgiac AMC (c - g - c) (1)
b, (1) => goc AMB = goc AMC
goc AMB + goc AMC = 180 (ke bu)
=> goc AMB = 90
=> AM | BC (dn)