K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Sửa đề: chứng minh

\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\) 

ĐKXĐ: \(a\ge0;a\ne1\) 

\(\left(\frac{2\left(\sqrt{a}-1\right)+a-\sqrt{a}}{\sqrt{a}-1}\right)\left(\frac{2\left(\sqrt{a}+1\right)-a-\sqrt{a}}{\sqrt{a}+1}\right)\) 

\(=\left(\frac{\sqrt{a}+a-2}{\sqrt{a}-1}\right)\left(\frac{\sqrt{a}-a+2}{\sqrt{a}+1}\right)\) 

\(=\frac{\left(\sqrt{a}+a-2\right)\left(\sqrt{a}-a+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)  

\(=\frac{\left(\sqrt{a}\right)^2-\left(a-2\right)^2}{\left(\sqrt{a}\right)^2-1}\) 

\(=\frac{a-a^2+4a-4}{a-1}\) 

\(=\frac{-a\left(a-1\right)+4\left(a-1\right)}{a-1}\)  

\(=\frac{\left(4-a\right)\left(a-1\right)}{a-1}=4-a=VP\) 

=> đpcm

15 tháng 7 2017

Đề bài đúng chứ 

13 tháng 9 2015

P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)

\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)

Các bn xem bài này mk làm đúng khônga)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)VT=\(\left(\frac{a\sqrt{a}+b\sqrt{b}-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)    =\(\left(\frac{a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)   ...
Đọc tiếp

Các bn xem bài này mk làm đúng không

a)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)

VT=\(\left(\frac{a\sqrt{a}+b\sqrt{b}-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

    =\(\left(\frac{a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

    =\(\left(\frac{\left(a\sqrt{a}-a\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

    =\(\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}{\sqrt{a+\sqrt{b}}}\right)\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)

   = \(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\frac{a-b}{a-b}=1\Rightarrow\left(=VP\right)\)

b)\(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=a-b\)

VT=\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\sqrt{a}+\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

    =\(a+\sqrt{ab}-\sqrt{ab}-b=a-b\Rightarrow\left(=VP\right)\)

 

 

2
15 tháng 7 2017

Đây là đề chứng minh hả !

Phần a , b đúng r 

Nhưng phần b chỗ \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2\) = a - b 

Dùng hằng đẳng thức thức 3 như vậy sẽ hay hơn !

Chúc bạn học tốt!

6 tháng 8 2018

nhưng bn làm đúng rùi mà

19 tháng 8 2020

a/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(J=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1-\sqrt{x}+1\right)\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)

\(=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}\)

Vậy...

b/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(K=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{x-1}{\sqrt{x}}\)

Vậy...

c/ Tương tự

Cho e xin cảm ơn trc ak