Tìm số tự nhiên a,b biết:
\(\frac{386579}{512}=\frac{2003}{2+\frac{3}{4+\frac{5}{a+\frac{2}{b}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
\(M=512-\frac{512}{2}-\frac{512}{2^2}-...-\frac{512}{2^{10}}\)
\(M=512.\left(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\right)\)
Đặt \(A=1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(A=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\left(1-\frac{1}{2^{10}}\right)\)
\(A=1-1+\frac{1}{2^{10}}\)
\(A=\frac{1}{2^{10}}\)
\(\Rightarrow M=512.\frac{1}{2^{10}}\)
\(M=\frac{512}{2^{10}}\)
Mình làm vậy không biết có đúng ko nữa!
Chúc bạn học tốt
\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)
\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)
\(\Rightarrow n+1=4\Rightarrow n=3\)
\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)
\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)
a)Gọi ƯC(5n+3,7n+4)=d
Ta có: 5n+3 chia hết cho d=>7.(5n+3)=35n+21 chia hết cho d
7n+4 chia hết cho d=>5.(7n+4)=35n+20 chia hết cho d
=>35n+21-35n-20=1 chia hết cho d
=>d=Ư(1)=1
=>d=1
=>(5n+3,7n+4)=1
=>Phân số 5n+3/7n+4 là phân số tối giản
=>ĐPCM
\(\frac{a}{2}-\frac{3}{b}=\frac{5}{6}\)
\(\frac{a}{2}-\frac{5}{6}=\frac{3}{b}\)
\(\frac{3a}{6}-\frac{5}{6}=\frac{3}{b}\)
\(\frac{3a-5}{6}=\frac{3}{b}\)
= ( 3a-5 ) . b = 6.3
(3a-5) . b = 18
bây giờ lập bảng giá trị đi là ra , dễ mà
\(b.\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)
\(\Leftrightarrow\frac{35+9}{105}< \frac{x}{210}< \frac{60+63+35}{105}\)
\(\Leftrightarrow\frac{44}{105}< \frac{x}{210}< \frac{158}{105}\)
\(\Leftrightarrow\frac{88}{210}< \frac{x}{210}< \frac{316}{210}\)
Suy ra \(x\in\left\{89;90;100;...;313;314;315\right\}\)
\(c.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{11}-\frac{1}{21}-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\frac{21-11-231x+221}{231}=\frac{308}{231}\)
\(\Leftrightarrow-231x=308-21+11-221\)
\(\Leftrightarrow-231x=77\)
\(\Leftrightarrow x=-\frac{77}{231}=-\frac{1}{3}\)
^^
Ta có \(\frac{386579}{512}=\frac{2003}{\frac{512}{193}}=\frac{2003}{2+\frac{3}{4+\frac{5}{a+\frac{2}{b}}}}\)
\(\Rightarrow2+\frac{3}{4+\frac{5}{a+\frac{2}{b}}}=\frac{512}{193}\)
\(\Rightarrow\frac{3}{4+\frac{5}{a+\frac{2}{b}}}=\frac{126}{193}=\frac{3}{\frac{193}{42}}\)
\(\Rightarrow4+\frac{5}{a+\frac{2}{b}}=\frac{193}{42}\)
\(\Rightarrow\frac{5}{a+\frac{2}{b}}=\frac{25}{42}=\frac{5}{\frac{42}{5}}\)
\(\Rightarrow a+\frac{2}{b}=\frac{42}{5}=\frac{2}{5}+\frac{40}{5}=8+\frac{2}{5}\)
Do hai biểu thức bằng nhau nên đồng nhất hệ số
\(\Rightarrow\hept{\begin{cases}a=8\\b=5\end{cases}}\)