K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

câu d) thế nào hông hiểu ?????

15 tháng 7 2017

CỨ LÀM ĐI ĐÃ

29 tháng 4 2020

+) Câu d sửa đề thành BF . BA + CE . CA = BC2

a, Xét △AFH vuông tại F và △ADB vuông tại D

Có: FAH là góc chung

=> △AFH ᔕ △ADB (g.g)

b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)

Xét △ABH và △ADF

Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)

        BAH là góc chung

=> △ABH ᔕ △ADF (c.g.c)

c, Xét △HFB vuông tại F và △HEC vuông tại E

Có: FHB = EHC (2 góc đối đỉnh)

=> △HFB ᔕ △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB  

d, Sửa đề thành BF . BA + CE . CA = BC2

Xét △HEC vuông tại E và △AFC vuông tại F

Có: HCE là góc chung

=> △HEC ᔕ △AFC (g.g)

\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)

=> FC . HC = EC . AC  (1)

Xét △HFB vuông tại F và △AEB vuông tại E

Có: FBH là góc chung

=> △HFB ᔕ △AEB (g.g)

\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)

=> FB . AB = EB . HB  (2)

Xét △BFC vuông tại F và △HDC vuông tại D

Có: HCD là góc chung

=> △BFC ᔕ △HDC (g.g)

\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)

=> FC . HC = BC . DC (3)

Xét △BEC vuông tại E và △BDH vuông tại D

Có: HBD là góc chung

=> △BEC ᔕ △BDH (g.g)

\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)

=> BC . DB = BE . BH (4)

Từ (1) và (3) => EC . AC = BC . DC

Từ (2) và (4) => FB . AB = BC . DB 

Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2

3 tháng 5 2020

a, XÉt Δ AEF và ΔABC

AE/AF=ABAC⇒AE/AB=AF/AC

góc BACchung

=> Δ AEF ∼ ΔABC (đpcm)

b, mk ko hiểu

31 tháng 7 2023

a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).

b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)

c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)  (1).

 Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)   (2).

Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)

31 tháng 7 2023

\(\dfrac{ }{ }\)