chứng minh rằng,với hai số a,b thỏa mãn a>b>0 thì \(\sqrt{a}-\sqrt{b}\)<\(\sqrt{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Với mọi \(0< a< \dfrac{1}{2}\) ta có:
\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)
\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)
\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)
Do đó:
\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)
Tương tự:
\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)
Cộng vế:
\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}^2\leq (a^2+b^2)(1+a+1+b)=a+b+2\)
Áp dụng BĐT Cô-si:
\((a+b)^2\leq 2(a^2+b^2)=2\Rightarrow a+b\leq \sqrt{2}\)
Do đó: $\text{VT}^2\leq 2+\sqrt{2}$
$\Rightarrow \text{VT}\leq \sqrt{2+\sqrt{2}}$ (đpcm)
Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).
\(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\left(a>b>0\right)\)
\(\Leftrightarrow\left(\sqrt[]{a}-\sqrt[]{b}\right)^2< \left(\sqrt[]{a-b}\right)^2\)
\(\Leftrightarrow a+b-2\sqrt[]{ab}< a-b\)
\(\Leftrightarrow2\sqrt[]{ab}-2b>0\)
\(\Leftrightarrow2\sqrt[]{b}\left(\sqrt[]{a}-\sqrt[]{b}\right)>0\left(1\right)\)
mà \(a>b>0\)
Nên \(\left(1\right)\) luôn luôn đúng
Vậy \(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\)