Cho Hình 3.49. Chứng minh rằng:
a) d // BC;
b) d \( \bot \) AH;
c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: AB//CD;AD//BC
a: Xét ΔABD có AB=AD
nên ΔABD cân tại A
Suy ra: \(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{BDC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của \(\widehat{ADC}\)
a: Trên tia BH có HB=HD
nên HB và HD là hai tia đối nhau
mà HB và HC là hai tia đối nhau
nên HD và HC là hai tia trùng nhau
=>\(D\in HC\)
b: Đề sai rồi bạn
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạngvói ΔAHD
c: ΔHAC vuông tại H có HE là đường cao
nên HE^2=AE*EC
a) Ta có:
\(\Delta ABC\) vuông tại \(A\) nên \(\widehat {{\rm{BAC}}} = 90^\circ \) và \(AB \bot AC\)
Mà \(DE\) // \(AB\) ; \(DF\) // \(AC\)
Suy ra \(DE \bot AC;\;DF \bot AB\)
Suy ra \(\widehat {DEA} = \widehat {DFA} = 90^\circ \)
Tứ giác \(AEDF\) có \(\widehat {BAC} = \widehat {DEA} = \widehat {DFA} = 90^\circ \) nên là hình chữ nhật
b) Vì \(AEDF\) là hình chữ nhật (cmt)
Suy ra \(AE = DF\); \(AF = DE\); \(AF\) // \(DE\); \(AE\) // \(DF\)
Vì \(DE \bot AC;\;DF \bot AB\) (cmt)
Suy ra \(\widehat {DEC} = \widehat {BFD} = 90^\circ \)
Xét \(\Delta BFD\) và \(\Delta DEC\) ta có:
\(\widehat {{\rm{BFD}}} = \widehat {{\rm{DEC}}} = 90^\circ \) (cmt)
\(BD = DC\) (gt)
\(\widehat {{\rm{FBD}}} = \widehat {{\rm{EDC}}}\) (do \(DE\) // \(BF\) )
Suy ra \(\Delta BFD = \Delta DEC\) (ch – gn)
Suy ra \(BF = DE\); \(DF = EC\) (hai cạnh tương tứng)
Xét tứ giác \(BFED\) ta có:
\(BF\) // \(DE\) (do \(AB\) // \(DE\))
\(BF = DE\) (cmt)
Suy ra \(BFED\) là hình bình hành
a)
\(\begin{array}{l}\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 .\end{array}\)
b)
\(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {DC} \) và \(\overrightarrow {BC} - \overrightarrow {BD} = \overrightarrow {DC} \)
\( \Rightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \)
a) Ta có: \(\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right)\)
Mà \(BC \in \left( {OBC} \right) \Rightarrow OA \bot BC\)
b) Ta có \(\left. \begin{array}{l}OA \bot OB\\OB \bot OC\end{array} \right\} \Rightarrow OB \bot \left( {OAC} \right)\)
Mà \(CA \in \left( {OAC} \right) \Rightarrow CA \bot OB\)
c) Ta có \(\left. \begin{array}{l}OC \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OC \bot \left( {OAB} \right)\)
Mà \(AB \in \left( {OAB} \right) \Rightarrow AB \bot OC\)
Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.
a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.
b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:
- AD = DC (vì D là trung điểm của BC)
- AE = EB (vì E là trung điểm của AB)
- AF = FC (vì F là trung điểm của AC)
Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.
c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.
- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.
- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.
Do đó, ta có AM = AN.
- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)
- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)
Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.
Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.
Vậy ta đã chứng minh được M đối xứng với N qua A.
a) Vì \(\widehat {{A_1}} = \widehat {{C_1}}( = 50^\circ )\), mà 2 góc này ở vị trí so le trong nên d // BC (Dấu hiệu nhận biết hai đường thẳng song song )
b) Vì d // BC, mà AH \( \bot \)BC nên d \( \bot \)BC (Đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng kia)
c) Trong các kết luận trên, kết luận a) được suy ra từ dấu hiệu nhận biết hai đường thẳng song song
Kết luận b) được suy ra từ tính chất của hai đường thẳng song song.