tìm x :
1/2 + 1/6 + 1/12 + 1/20 +..... +2/x.(x + 1) = 98/100
giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99
= 1- 1/99
= 98/99
Bài 4:
= 1/2*3 + 1/3*4 + 1/4*5 +...+ 1/10*11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11
= 1/2 - 1/11= 9/22
\(A=1+2^2+2^4+...+2^{98}+2^{100}\)
=>\(2^2\cdot A=2^2+2^4+2^6+....+2^{98}+2^{100}+2^{102}\)
=>\(A\left(2^2-1\right)=2^2+2^4+...+2^{100}+2^{102}-1-2^2-2^4-...-2^{98}-2^{100}\)
=>\(3A=2^{102}-1\)
=>\(A=\dfrac{2^{102}-1}{3}\)
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10
thay x = a thôi đấy
chẳng động não gì cả
\(a,-12\left(x-5\right)+7\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-12x-7x+81=5\)
\(-19x=5-81\)
\(-19x=-76\)
\(x=-76:\left(-19\right)\)
\(x=4\)
\(Vậyx=4\)
\(b,30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(30x+60-6x-30-24x=100\)
\(30x-6x-24x+60-30=100\)
\(0x+30=100\)
\(\Rightarrow Vôlý\)
Vậy không có giá trị nào của x thỏa mãn đề bài.
\(c,-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-1-\frac{1}{2}x-\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-1-\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-\frac{11}{2}x-\frac{2}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-\frac{2}{3}+\frac{5}{6}=\frac{3}{2}x+\frac{11}{2}x\)
\(-\frac{4}{6}+\frac{5}{6}=\frac{14}{2}x\)
\(\frac{1}{6}=7x\)
\(x=\frac{1}{6}:7\)
\(x=\frac{1}{6}.\frac{1}{7}\)
\(x=\frac{1}{42}\)
\(Vậyx=\frac{1}{42}\)
\(d,-3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
\(-3x+\frac{3}{2}-5x-3=-x+\frac{1}{5}\)
\(-3x-5x+\frac{3}{2}-3=-x+\frac{1}{5}\)
\(-8x+\frac{3}{2}-\frac{6}{2}=-x+\frac{1}{5}\)
\(-8x-\frac{3}{2}=-x+\frac{1}{5}\)
\(-\frac{3}{2}-\frac{1}{5}=-x+8x\)
\(\frac{15}{10}-\frac{2}{10}=7x\)
\(7x=\frac{13}{10}\)
\(x=\frac{13}{10}:7\)
\(x=\frac{13}{10}.\frac{1}{7}\)
\(x=\frac{13}{70}\)
\(Vậyx=\frac{13}{70}\)
Sửa đề : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+....+\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{1}-\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{50}\)
\(\Leftrightarrow x=50-1=49\)
Sửa đề: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(1-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(\frac{1}{x+1}=1-\frac{98}{100}\)
(=)\(\frac{1}{x+1}=\frac{1}{50}\)=> \(x+1=50\)
\(x=50-1\)
\(x=49\)
T_i_c_k cho mình nha,thanks you so much!