K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Vì \({3^2} = 9\) và 3 > 0 nên \(\sqrt 9  = 3\)

b) Vì \({4^2} = 16\) và 4 > 0 nên \(\sqrt {16}  = 4\)

c) Vì \({9^2} = 81\) và 9 > 0 nên \(\sqrt {81}  = 9\)

d) Vì \({11^2} = 121\) và 11 > 0 nên \(\sqrt {121}  = 11\)

15 tháng 10 2023

 

a,√9=3

b,√16=4

c,√81=9

d,√121=11

`#3107.101107`

a,

`\sqrt{9} = \sqrt{3^2} = 3`

b,

`\sqrt{16} = \sqrt{4^2} = 4`

c,

`\sqrt{81} = \sqrt{9^2} = 9`

d,

`\sqrt{121} = \sqrt{11^2} = 11`

Phần a): 0;1;4;9;16;25;36;49;64;81;100;121;144;169;196;225;256;289;324;361

Phần b)

 \(64=8^2\)

\(100=10^2\)

\(121=11^2\)

\(169=13^2\)

\(196=14^2\)

\(289=17^2\)

12 tháng 7 2021

a)02,12,22,32,...,192

b)64=82

100=102

121=112

169=132

196=142

289=172

 

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:

D = {10; 11; 12; …; 97; 98; 99}

Số phần tử của D là 90

a) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bình phương của một số tự nhiên” là: 16, 25, 36, 49, 64, 81.

Vì thế, xác suất của biến cố trên là: \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\)

b) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bội của 15” là: 15, 30, 45, 60, 75, 90.

Vì thế, xác suất của biến cố trên là: \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\)

c) Có tám kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là ước của 120” là: 10, 12, 15, 20, 24, 30, 40, 60.

Vì thế, xác suất của biến cố trên là: \(\dfrac{{8}}{{90}} = \dfrac{4}{45}\)

8 tháng 7 2021

Ta có dãy:

\(0^2,1^2,2^2,3^2,4^2,5^2,6^2,7^2,8^2,9^2,10^2,11^2,12^2,13^2,14^2,15^2,16^2,17^2,18^2,19^2,20^2\)

\(\Rightarrow0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400\)

6 tháng 2 2022

B

6 tháng 2 2022

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm

\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu

\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai

b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)

Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)

Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.