(a-b)10/(c-d)10=3a3+2b3/3c3+2d3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là hình chiếu vuông góc của A' lên (ABCD)
Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD
\(\Rightarrow H\) là trung điểm BD
\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)
\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)
\(\Rightarrow V=A'H.AB.AD=3a^3\)
1) Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
2) Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{10}}{b^{10}}=\frac{c^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}=\frac{a^{10}-b^{10}}{c^{10}-d^{10}}\Leftrightarrow\frac{a^{10}+b^{10}}{a^{10}-b^{10}}=\frac{c^{10}+d^{10}}{c^{10}-d^{10}}\)
Lời giải:
Vì $a,b,c$ không âm và $a+b+c=2\Rightarrow 0\leq a,b,c\leq 2$
Khi đó:
$a\leq 12a$
$2b^2=2b.b\leq 4b\leq 12b$
$3c^3=3c^2.c\leq 3.2^2.c=12c$
$\Rightarrow P=a+2b^2+3c^3\leq 12(a+b+c)=24$
Vậy $P_{\max}=24$ khi $(a,b,c)=(0,0,2)$
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{5a}{5c}=\frac{8b}{8d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5a}{5c}=\frac{8b}{8d}=\frac{5a+8b}{5c+8d}\) (1)
\(\frac{5a}{5c}=\frac{8b}{8d}=\frac{5a-8b}{5c-8d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{5a+8b}{5c+8d}=\frac{5a-8b}{5c-8d}.\)
\(\Rightarrow\frac{5a+8b}{5a-8b}=\frac{5c+8d}{5c-8d}\left(đpcm\right).\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}.\)
\(\Rightarrow\frac{a^{10}}{c^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}\left(đpcm\right).\)
Chúc bạn học tốt!
a) Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{5a+8b}{5c+8d}=\frac{5a-8b}{5c-8d}\\ \Rightarrow\frac{5a+8b}{5a-8b}=\frac{5c+8d}{5c-8d}\)
b) Có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}\)
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
Chọn B
Mà ∠ B = ∠ A + 10 ° (2)
nên từ (1) và (2) => ∠ C - 10 ° = ∠ A + 10 ° => ∠ C = ∠ A + 20 °
Ta có: ∠ D = ∠ C + 10 ° => ∠ D = ∠ A + 20 ° + 10 ° => ∠ D = ∠ A + 30 °
Ta có : ∠ A+ ∠ B+ ∠ C+ ∠ D = 360 ° ( tổng bốn góc của tứ giác)
=> ∠ A+ ∠ A + 10 ° + ∠ A + 20 ° + ∠ A + 30 ° = 360 °
=> 4 ∠ A + 60 ° = 360 °
Do đó: ∠ A= 75 °
=> ∠ B = ∠ A + 75 ° + 10 ° = 85 °
=> ∠ C= ∠ A+ 20 ° = 95 °
=> ∠ D= ∠ A+ 30 ° = 105 °