K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

a: ΔACI vuông tại I

=>\(IA^2+IC^2=AC^2\)

=>\(IC^2=15^2-12^2=81\)

=>IC=9(cm)

Xét ΔCAB vuông tại A có AI là đường cao

nên \(CA^2=CI\cdot CB\)

=>CB=15^2/9=25(cm)

CI+IB=CB

=>IB+9=25

=>IB=16cm

ΔIAB vuông tại I

=>\(IA^2+IB^2=AB^2\)

=>\(AB^2=12^2+16^2=400\)

=>AB=20(cm)

b: Xét tứ giác AKIE có

\(\widehat{AKI}=\widehat{AEI}=\widehat{KAE}=90^0\)

Do đó: AKIE là hình chữ nhật

=>AI=KE

=>KE=12(cm)

15 tháng 10 2021

Ai giúp em vs ạ 

21 tháng 6 2018

a) Xét \(\Delta ACI\)và \(\Delta BCI\)có :

\(AC=BC\left(GT\right)\)(1)

\(\widehat{CIA}=\widehat{CIB}=90^o\)(2)

\(CI:\)Cạnh chung (3)

Từ (1) ; (2) và (3)

\(\Rightarrow\Delta ACI=\Delta BCI\left(c-g-c\right)\)

\(\Rightarrow AI=BI\)( cặp cạnh tương ứng )

b) Vì \(AI=BI\)( Câu a)

Mà \(AB=12cm\)

\(\Rightarrow AI=BI=6cm\)

Áp dụng định lí  PY-ta-go cho tam giác vuông \(CIA\)có :

\(IA^2+IC^2=AC^2\)

\(\Rightarrow6^2+IC^2=10^2\)

\(\Rightarrow36+IC^2=100\)

\(\Rightarrow IC^2=100-36\)

\(\Rightarrow IC^2=64\)

\(\Rightarrow IC=\sqrt{64}\)

\(\Rightarrow IC=8cm\)

c) Xét \(\Delta\perp AHI\)và \(\Delta\perp BKI\)có :

\(\widehat{A}=\widehat{B}\)( vì tam giác ACB cân )     (1)

\(IA=IB\)( câu a )   (2)

\(\widehat{AHI}=\widehat{BKI}=90^o\)(3)

Từ (1);(2)và (3)

\(\Rightarrow\Delta\perp AHI=\Delta\perp BKI\)( Cạnh huyền - góc nhọn )

\(\Rightarrow HI=IK\)( cặp cạnh tương ứng )

21 tháng 6 2018

C A B I H K

A C B D I

Hình nè

a/ Xét tam giác DCA và tam giác DCI có:

DC chung

Góc A=I=90 độ

Góc ICD=ACD(phân giác góc C)

=> Tam giác DCA=tam giác DCI(ch-gn)

=> AC=CI( cạnh tương ứng)

6 tháng 5 2023

Ỏ sao lại vừa hỏi vừa trả lời zậylolang

6 tháng 5 2023

xl mình gửi lộn

Sửa đề: CI\(\perp AB\)

a) Sửa đề: Chứng minh IA=IB

Xét ΔCIA vuông tại I và ΔCIB vuông tại I có

CA=CB(ΔCAB cân tại C)

CI chung

Do đó: ΔCIA=ΔCIB(cạnh huyền-cạnh góc vuông)

nên IA=IB(hai cạnh tương ứng)

Ta có: IA=IB(cmt)

mà IA+IB=AB=12cm(I nằm giữa A và B)

nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:

\(CI^2+AI^2=CA^2\)

\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)

hay CI=8(cm)

Vậy: CI=8cm

b) Bổ sung đề: IH\(\perp AC\) tại H

Xét ΔIHA vuông tại H và ΔIKB vuông tại K có

IA=IB(cmt)

\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔABC cân tại C)

Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)

nên IH=IK(hai cạnh tương ứng)

c)

Sửa đề: Chứng minh HK//AB

Ta có: ΔIHA=ΔIKB(cmt)

nên HA=KB(hai cạnh tương ứng)

Ta có: CH+HA=CA(H nằm giữa C và A)

CK+KB=CB(K nằm giữa C và B)

mà HA=KB(cmt)

và CA=CB(ΔCAB cân tại C)

nên CH=CK

hay C nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IH=IK(cmt)

nên I nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra CI là đường trung trực của HK

hay CI\(\perp\)HK

Ta có: CI\(\perp\)HK(cmt)

CI\(\perp\)AB(gt)

Do đó: HK//AB(Định lí 1 từ vuông góc tới song song)

cảm ơn bạn nha !!!! :>haha

a:

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(CA^2=BA^2+BC^2\)

\(\Leftrightarrow CA^2=10^2+12^2=244\)

hay \(CA=2\sqrt{61}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BI là đường cao ứng với cạnh huyền AC, ta được:

\(\left\{{}\begin{matrix}\dfrac{1}{BI^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\\BA^2=AI\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BI=\dfrac{60\sqrt{61}}{61}\left(cm\right)\\AI=\dfrac{50\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)

16 tháng 7 2021

nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp