cho tam giác abc vuông tại a đường cao AI. biết AC=15cm , AI= 12cm.
a)Tính CI, IB,BC,AB
b) Kẻ IK vuông góc AB, IE vuông góc AC. Tính KE
GIÚP MIK VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ACI\)và \(\Delta BCI\)có :
\(AC=BC\left(GT\right)\)(1)
\(\widehat{CIA}=\widehat{CIB}=90^o\)(2)
\(CI:\)Cạnh chung (3)
Từ (1) ; (2) và (3)
\(\Rightarrow\Delta ACI=\Delta BCI\left(c-g-c\right)\)
\(\Rightarrow AI=BI\)( cặp cạnh tương ứng )
b) Vì \(AI=BI\)( Câu a)
Mà \(AB=12cm\)
\(\Rightarrow AI=BI=6cm\)
Áp dụng định lí PY-ta-go cho tam giác vuông \(CIA\)có :
\(IA^2+IC^2=AC^2\)
\(\Rightarrow6^2+IC^2=10^2\)
\(\Rightarrow36+IC^2=100\)
\(\Rightarrow IC^2=100-36\)
\(\Rightarrow IC^2=64\)
\(\Rightarrow IC=\sqrt{64}\)
\(\Rightarrow IC=8cm\)
c) Xét \(\Delta\perp AHI\)và \(\Delta\perp BKI\)có :
\(\widehat{A}=\widehat{B}\)( vì tam giác ACB cân ) (1)
\(IA=IB\)( câu a ) (2)
\(\widehat{AHI}=\widehat{BKI}=90^o\)(3)
Từ (1);(2)và (3)
\(\Rightarrow\Delta\perp AHI=\Delta\perp BKI\)( Cạnh huyền - góc nhọn )
\(\Rightarrow HI=IK\)( cặp cạnh tương ứng )
a/ Xét tam giác DCA và tam giác DCI có:
DC chung
Góc A=I=90 độ
Góc ICD=ACD(phân giác góc C)
=> Tam giác DCA=tam giác DCI(ch-gn)
=> AC=CI( cạnh tương ứng)
Sửa đề: CI\(\perp AB\)
a) Sửa đề: Chứng minh IA=IB
Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB(ΔCAB cân tại C)
CI chung
Do đó: ΔCIA=ΔCIB(cạnh huyền-cạnh góc vuông)
nên IA=IB(hai cạnh tương ứng)
Ta có: IA=IB(cmt)
mà IA+IB=AB=12cm(I nằm giữa A và B)
nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:
\(CI^2+AI^2=CA^2\)
\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)
hay CI=8(cm)
Vậy: CI=8cm
b) Bổ sung đề: IH\(\perp AC\) tại H
Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB(cmt)
\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔABC cân tại C)
Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)
nên IH=IK(hai cạnh tương ứng)
c)
Sửa đề: Chứng minh HK//AB
Ta có: ΔIHA=ΔIKB(cmt)
nên HA=KB(hai cạnh tương ứng)
Ta có: CH+HA=CA(H nằm giữa C và A)
CK+KB=CB(K nằm giữa C và B)
mà HA=KB(cmt)
và CA=CB(ΔCAB cân tại C)
nên CH=CK
hay C nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IH=IK(cmt)
nên I nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra CI là đường trung trực của HK
hay CI\(\perp\)HK
Ta có: CI\(\perp\)HK(cmt)
CI\(\perp\)AB(gt)
Do đó: HK//AB(Định lí 1 từ vuông góc tới song song)
a:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(CA^2=BA^2+BC^2\)
\(\Leftrightarrow CA^2=10^2+12^2=244\)
hay \(CA=2\sqrt{61}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BI là đường cao ứng với cạnh huyền AC, ta được:
\(\left\{{}\begin{matrix}\dfrac{1}{BI^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\\BA^2=AI\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BI=\dfrac{60\sqrt{61}}{61}\left(cm\right)\\AI=\dfrac{50\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)
a: ΔACI vuông tại I
=>\(IA^2+IC^2=AC^2\)
=>\(IC^2=15^2-12^2=81\)
=>IC=9(cm)
Xét ΔCAB vuông tại A có AI là đường cao
nên \(CA^2=CI\cdot CB\)
=>CB=15^2/9=25(cm)
CI+IB=CB
=>IB+9=25
=>IB=16cm
ΔIAB vuông tại I
=>\(IA^2+IB^2=AB^2\)
=>\(AB^2=12^2+16^2=400\)
=>AB=20(cm)
b: Xét tứ giác AKIE có
\(\widehat{AKI}=\widehat{AEI}=\widehat{KAE}=90^0\)
Do đó: AKIE là hình chữ nhật
=>AI=KE
=>KE=12(cm)