Cho tam giác ABC cân tại A. Qua điểm M nằm giữa A và B kẻ đường thẳng song song với BC, cắt cạnh AC tại N. Chứng minh tam giác AMN cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMN có
Ax vừa là đường cao, vừa là phân giác
=>ΔAMN cân tại A
b: BE//AC
=>góc BEM=góc ANE
=>góc BEM=góc BME
=>BE=BM
Xét ΔDEB và ΔDNC có
góc DBE=góc DCN
DB=DC
góc BDE=góc NDC
=>ΔDEB=ΔDNC
=>BE=NC
=>BE=CN
a: Xét ΔABC có
N là trung điểm của BC
NK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
N là trung điểm của BC
K là trung điểm của AC
Do đó: NK là đường trung bình của ΔBAC
Suy ra: \(NK=\dfrac{1}{2}AB\left(1\right)\)
b: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình của ΔABC
Suy ra: \(NM=\dfrac{AC}{2}\left(2\right)\)
Ta có: ΔBAC cân tại A
nên \(AB=AC\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a: Xét ΔMBC và ΔMDA có
góc MCB=góc MAD
MC=MA
góc BMC=góc DMA
=>ΔMBC=ΔMDA
b: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔAMB=ΔCMD
=>AB=CD
=>CA=CD
=>ΔCAD cân tại C
c: góc BCD=góc BAD
góc BCE=180 độ-góc ACB
=góc ABC+góc BAC
=góc ACB+góc BAC
=góc CAD+góc BAC
=góc BAD
=>góc BCD=góc BCE
d: Xét ΔEBD có
EM là trung tuyến
EC=2/3EM
=>C là trọng tâm
=>DC đi qua trung điểm của BE
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
Ta có tam giác ABC cân mà MN // BC. Nên \(\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\)(đồng vị)
Mà \(\widehat {ABC} = \widehat {ACB}\)(tam giác ABC cân) nên \(\widehat {AMN} = \widehat {ANM}\).
Vậy tam giác AMN cân tại A ( Tam giác có 2 góc bằng nhau)