4n -1 = 1024
Làm ơn giúp tôi với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(1=4^0\)
\(4=4^1\)
\(16=4^2\)
\(256=4^4\)
b: \(\dfrac{1}{4}=4^{-1}\)
\(\dfrac{1}{64}=4^{-3}\)
\(\dfrac{1}{256}=4^{-4}\)
\(\dfrac{1}{16}=4^{-2}\)
\(\dfrac{1}{1024}=4^{-5}\)
2n-1 là Ư4 mà Ư4 = 1,-1,2,-2,4,-4
-> n= 1,0
4n+ 1 là Ư10 mà Ư10= -1,1,2,-2,5,-5,10,-10
-> n= 0,1
(bài này mk làm nếu n là số nguyên nhé)
B4:
\(CTTQ:Na_xS_yO_z\left(x,y,z:nguy\text{ê}n,d\text{ươ}ng\right)\\ n_{Na}=\dfrac{4.6}{23}=0,2\left(mol\right);n_S=\dfrac{3,2}{32}=0,1\left(mol\right);n_O=\dfrac{4,8}{16}=0,3\left(mol\right)\\ x:y:z=0,2:0,1:0,3=2:1:3\\ \Rightarrow x=2;y=1;z=3\\ \Rightarrow CTHH:Na_2SO_3\)
ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A thuộc Z
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n +3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n + 3 = 1 => 2n = -2 => n = -1 (Loại)
2n+3 = -1 => 2n=-4 => n = -2 (Loại)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = -8 => n = -4 (Loại)
\(\Rightarrow n\ne1\) thì A là phân số ( n thuộc N)
\(B=\frac{5}{21}+\frac{5}{77}+\frac{5}{165}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{1}{5}B=\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{\left(4n-1\right)\left(4n+3\right)}\)
\(B-\frac{1}{5}B=\frac{5}{21}+\frac{5}{77}+\frac{5}{165}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}-\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\)\(\frac{1}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{4}{5}B=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{4}{5}B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{4}{5}B=\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+\frac{4}{11}-\frac{4}{15}+...+\frac{4}{4n-1}-\frac{4}{4n+3}\)
\(\frac{4}{5}B=\frac{4}{3}-\frac{4}{4n-3}\)
\(\frac{4}{5}B=\frac{16n-24}{12n-9}\)
\(B=\frac{\frac{16n-24}{12n-9}}{\frac{4}{5}}\)
\(B=\frac{20n-30}{12n-9}\)
B = \(\frac{5}{21}+\frac{5}{77}+\frac{5}{165}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{4n-1}+\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{3}-\frac{1}{4n+3}\right)=\frac{5}{12}-\frac{5}{4\left(4n+3\right)}=\frac{5}{12}-\frac{5}{16n+12}\)
4n-1=1024
4n-1=45
n-1=5
n=5+1
n=6
Ta có :
\(1024=2^{10}=4^5\)
=> n - 1 = 5
=> n = 6