Cho đơn thức \(P(x) = 2x\) và đa thức \(Q(x) = 3{x^2} + 4x + 1\).
a) Hãy nhân đơn thức P(x) với từng đơn thức của đa thức Q(x).
b) Hãy cộng các tích vừa tìm được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các đơn thức của đa thức P(x) là: \(2x;3\).
Các đơn thức của đa thức Q(x) là: \(x;1\).
Tích mỗi đơn thức P(x) với từng đơn thức của đa thức Q(x) lần lượt là: \(2{x^2};2x;3x;3\).
b) Cộng các tích vừa tìm được:
\(2{x^2} + 2x + 3x + 3 = 2{x^2} + 5x + 3\).
a) Các đơn thức có trong đa thức P(x) là: \(4{x^2};3x\).
Chia từng đơn thức (của biến x) có trong đa thức P(x) cho đơn thức Q(x) được kết quả lần lượt là:
\(4{x^2}:2x = (4:2).({x^2}:x) = 2x\).
\(3x:2x = (3:2).(x:x) = \dfrac{3}{2}\).
b) Cộng các thương vừa tìm được \( = 2x + \dfrac{3}{2}\).
Đơn thức là: x2 và đa thức là: x2 + x + 1
Ta có:
x2.(x2 + x + 1) = x2.x2 + x2.x + x2.1
= x(2 + 2) + x(2 + 1) + x2
= x4 + x3 + x2
Khi đó: đa thức x4 + x3 + x2 là tích của đơn thức x2 và x2 + x + 1
a) Sắp xếp đa thức (một biến) theo số mũ giảm dần của biến là sắp xếp các đơn thức trong dạng thu gọn của đa thức đó theo số mũ giảm dần của biến.
b) Quan sát bảng để đưa ra các đơn thức thích hợp phù hợp với biến có số mũ tương ứng.
c) Xác định đơn thức R(x) dựa vào kết quả phần b).
Lời giải chi tiết:
a) \(P(x) = 5{x^2} + 4 + 2x = 5{x^2} + 2x + 4\); \(Q(x) = 8x + {x^2} + 1 = {x^2} + 8x + 1\).
b)
Đa thức | Đơn thức có số mũ 2 của biến (Đơn thức chứa \({x^2}\)) | Đơn thức có số mũ 1 của biến (Đơn thức chứa x) | Số hạng tự do (Đơn thức không chứa x) |
P(x) | \(5{x^2}\) | 2x | 4 |
Q(x) | \({x^2}\) | 8x | 1 |
R(x) | \(6{x^2}\) | 10x | 5 |
c) Vậy \(R(x) = 6{x^2} + 10x + 5\).
a) Các đơn thức của biến x có trong đa thức P(x) là: \({x^2},2{x^2},6x,2x,( - 3)\).
b) Số mũ của biến x trong các đơn thức \({x^2},2{x^2},6x,2x,( - 3)\) lần lượt là: 2; 2; 1; 1; 0.
c) \(P(x) = {x^2} + 2{x^2} + 6x + 2x - 3 = ({x^2} + 2{x^2}) + (6x + 2x) - 3 = 3{x^3} + 8x - 3\).
`a)`
\(P\left(x\right)=4x+3x^2+x^2+1-5x-2x\\ =\left(3x^2+x^2\right)+\left(4x-5x-2x\right)+1\\ =4x^2-3x+1\\ Q\left(x\right)=3x+x+7-5x^2+5x-11\\ =-5x^2+\left(3x+x+5x\right)+\left(7-11\right)\\ =-5x^2+9x-4\)
`b)`
Đa thức `P(x)` có :
Bậc `2`
Đa thức `Q(x)` có :
Bậc `2`
`c)`
\(P\left(x\right)+Q\left(x\right)=\left(4x^2-3x+1\right)+\left(-5x^2+9x-4\right)\\ =4x^2-3x+1-6x^2+9x-4\\ =\left(4x^2-5x^2\right)-\left(3x-9x\right)+\left(1-4\right)\\ =-x^2+6x-3\)
a: P(x)=4x^2+4x+1-7x=4x^2-3x+1
Q(x)=-5x^2+9x-4
b: P(x) có bậc 2
Q(x) có bậc 2
c: P(x)+Q(x)=4x^2-3x+1-5x^2+9x-4=-x^2+6x-3
a) \(P(x) = 4{x^2} + 1 + 3x = 4{x^2} + 3x + 1\) ; \(Q(x) = 5x + 2{x^2} + 3 = 2{x^2} + 5x + 3\).
b)
Đa thức | Đơn thức có số mũ 2 của biến (Đơn thức chứa \({x^2}\)) | Đơn thức có số mũ 1 của biến (Đơn thức chứa x) | Số hạng tự do (Đơn thức không chứa x) |
P(x) | \(4{x^2}\) | 3x | 1 |
Q(x) | \(2{x^2}\) | 5x | 3 |
S(x) | \(2{x^2}\) | – 2x | – 2 |
c) Vậy \(S(x) = 2{x^2} - 2x - 2\)
a)
Các đơn thức của đa thức Q(x) là: \(3{x^2};4x;1\).
Tích của đơn thức P(x) với từng đơn thức của đa thức Q(x) lần lượt là: \(2x.3{x^2} = 6{x^3};2x.4x = 8{x^2};2x.1 = 2x\).
b) Cộng các tích vừa tìm được:
\(6{x^3} + 8{x^2} + 2x\).