Thực hiện phép tính:
a) \({x^2}.{x^4}\); b) \(3{x^2}.{x^3}\); c) \(a{x^m}.b{x^n}\) (a ≠ 0; b ≠ 0; m, n \(\in\) N).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=8-x^3-x\left(16-x^2\right)=8-x^3-16x+x^3=-16x+8\)
b) \(=\left[\left(x+3\right)\left(x^2-3x+9\right)\right]:\left(x^2-3x+9\right)-x+7\)
\(=x+3-x+7=10\)
\(a,\left(x-2\right)\left(x+3\right)-x\left(x-5\right)=x^2-2x+3x-6-x^2+5x=6x-6\)
\(b,\dfrac{1}{x-2}+\dfrac{-2}{x+2}+\dfrac{2x-8}{x^2-4}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2-2x+4+2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)
a)\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)
b) \(x\left(3x-18\right)-3\left(x-4\right)\left(x-2\right)+8=3x^2-18x-3x^2+18x-24+8=-16\)
Tham khảo
a)
-7x2(3x - 4y)
= -7x2.3x + 7x2ư.4y
= -21x2 + 28x2y
b)
(x - 3)(5x - 4)
= x.5x - x.4 - 3.5x + 3.4
= 5x2 - 4x - 15x + 12
= 5x2 - 19x + 12
c)
(2x - 1)2 = 4x2 - 4x + 1
d)
(x + 3)(x - 3) = x2 - 32 = x2 - 9
\(a,=-21x^3+28x^2y\\ b,=5x^2-4x-15x+12=5x^2-19x+12\\ c,=4x^2-4x+1\\ d,=49-x^2\)
a) \(=6x^3+8x^2+2x-6x^3=8x^2+2x\)
b) \(=\left[3xy\left(xy+2xy^2-4\right)\right]:3xy=xy+2xy^2-4\)
c) \(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3}{x+2}-\dfrac{5}{x-2}=\dfrac{10x+3\left(x-2\right)-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
a, \(=6x^3+12x^2+2x-6x^3\\=12x^2+2x\)
b,
\(=xy+2xy^2-4\)
c,
\(\dfrac{10x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{5}{x-2}\)
\(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x-6}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{10x+3x-6-5x-10}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
\(\left(\dfrac{1}{x}+x-2\right):\left(\dfrac{1}{x^2-x}+1-\dfrac{3}{x-1}\right)\)
\(=\dfrac{x^2-2x+1}{x}:\dfrac{1+x^2-x-3x}{x\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{x\left(x-1\right)}{x^2-4x+1}=\dfrac{\left(x-1\right)^3}{x^2-4x+1}\)
a) \({x^2}.{x^4} = {x^{2 + 4}} = {x^6}\).
b) \(3{x^2}.{x^3} = 3.1.{x^{2 + 3}} = 3{x^5}\).
c) \(a{x^m}.b{x^n} = a.b.{x^{m + n}}\) (a ≠ 0; b ≠ 0; m, n \(\in\) N).