x/2=y/3=z/4 và x+2y-3z=-20
Tìm x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-1}{30+60-28}=\dfrac{186}{62}=3\)
\(\dfrac{x}{15}=3\Rightarrow x=45\\ \dfrac{y}{20}=3\Rightarrow y=60\\ \dfrac{z}{28}=3\Rightarrow x=84\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\dfrac{x}{2}=5\Rightarrow x=10\\ \dfrac{y}{3}=5\Rightarrow y=15\\ \dfrac{z}{4}=5\Rightarrow z=20\)
c) x : y :z : t = 3 : 4 : 5 :6\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}=\dfrac{x+y+z+t}{3+4+5+6}=\dfrac{3,6}{18}=\dfrac{1}{5}\)
\(\dfrac{x}{3}=\dfrac{1}{5}\Rightarrow x=\dfrac{3}{5}\\ \dfrac{y}{4}=\dfrac{1}{5}\Rightarrow y=\dfrac{4}{5}\\ \dfrac{z}{5}=\dfrac{1}{5}\Rightarrow z=1\\ \dfrac{t}{6}=\dfrac{1}{5}\Rightarrow t=\dfrac{6}{5}\)
d) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=-\dfrac{49}{7}=-7\)
\(\dfrac{x}{10}=-7\Rightarrow x=-70\\ \dfrac{y}{15}=-7\Rightarrow y=-105\\ \dfrac{z}{12}=-7\Rightarrow z=-84\)
e) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\dfrac{x}{2}=4\Rightarrow x=8\\ \dfrac{y}{3}=4\Rightarrow y=12\\ \dfrac{z}{4}=4\Rightarrow z=16\)
a) Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/6=z/3=(x-y+z)/(2-6+3)=18/(-1)=-18`
`=>x=-36`
`y=-108`
`z=-54`
b) Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/3=z/4=(x+2y-3z)/(2+2.3-3.4)=(-20)/(-4)=5`
`=>x=10`
`y=15`
`z=20`.
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{2-6+3}=\dfrac{18}{-1}=-18\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-18\right)=-36\\y=6\cdot\left(-18\right)=-108\\z=3\cdot\left(-18\right)=-54\end{matrix}\right.\)
\(b.\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-5\right)=-10\\y=3\cdot\left(-5\right)=-5\\z=4\cdot\left(-5\right)=-20\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=-\frac{20}{-4}=5\)
Nên : \(\frac{x}{2}=5\Rightarrow x=10\)
\(\frac{y}{3}=5\Rightarrow y=15\)
\(\frac{z}{4}=5\Rightarrow z=20\)
Vậy ............................
ta có : x/2 = y/3 = z/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2= y/3 = z/4 = x+2y-3z/ 2+2.3-3.4 =-20/-4 =5
Từ x/2 = 5 => x = 2.5 = 10
y/3 = 5 => y=3 .5 = 15
z/4 = 5 => z= 5.4 = 20