K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

giải

ta có AB=AD(gt)và góc A=60 độ nên tam giác DEF đều=>BD=AD

Tương tự tam giác DEF đều =>góc CBD=60độ

Từ BE+BF=BD=>AE=BF

Xét tam giác AED  và tam giác BFD  có:

AD=BD(cmt)

góc A=góc CBD=60 độ

AE=BF

Do đó tam giác AED=tam giác BFD(c,g.c)

=>DE=DF

 nên tam giác DEF cân  (1)

Và góc D1=góc D3 nên góc D1+góc EBD=60độ =>góc D3+góc EBD=60độ     (2)

Từ (1) và (2) suy ra tam giác DEF đều.

2 tháng 12 2021

chúc bạn học tốt

2 tháng 12 2021

Ta có ABCD là hình thoi nên \(AD=AB\)

Mà \(\widehat{A}=60^0\) nên ABD đều

Lại có BD là phân giác \(\widehat{ABC}\Rightarrow\widehat{ABD}=\widehat{DBC}=60^0\)

\(\left\{{}\begin{matrix}BE+BF=BD=AB\\AE+BE=AB\end{matrix}\right.\Rightarrow AE=BF\)

\(\left\{{}\begin{matrix}AE=BF\\AD=BD\\\widehat{DAE}=\widehat{DBF}=60^0\end{matrix}\right.\Rightarrow\Delta DEA=\Delta DFB\left(c.g.c\right)\\ \Rightarrow DE=DF\)

Do đó DEF cân tại D

Mà \(\widehat{ADE}=\widehat{BDF}\left(\Delta DEA=\Delta DFB\right)\)

\(\Rightarrow\widehat{ADE}+\widehat{EDB}=\widehat{BDF}+\widehat{EDB}\\ \Rightarrow\widehat{ADB}=\widehat{EDF}=60^0\)

Vậy tam giác DEF đều

20 tháng 3 2017

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0

Nếu D trùng B thì E sẽ trùng với A

=>Đường trung trực của DE là trung trực của AB

Nếu D trùng A thì E trùng với C

=>Đường ttrung trực của DE là trung trực của AC

Vẽ các đường trung trực của AB,AC, cắt nhau tại O

Gọi H,I lần lượt là trung điểm của AB,AC

=>OI vuông góc AC, OH vuông góc AB

Xét ΔOHB vuông tại H và ΔOIC vuông tại I có

OB=OC

HB=IC

=>ΔOHB=ΔOIC

=>OH=OI

ΔABC đều có O là giao của các đường trung trực

nên AO,BO lần lượt là phân giác của góc BAC, góc ABC

=>góc OAE=góc OBD=30 độ

=>ΔOAE=ΔOBD

=>OD=OE

=>O nằm trên trung trực của DE

=>ĐPCM