tìm n để n-2chia hết cho 3n^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 2 \(⋮\) n - 1 <=> 3(n - 1) + 5 \(⋮\) n - 1
=> 5 \(⋮\) n - 1 (vì 3(n - 1) \(⋮\) n - 1)
=> n - 1 ∈ Ư(5) = {1; 5}
n - 1 = 1 => n = 2
n - 1 = 5 => n = 6
Vậy n ∈ {2; 6}
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
2n -2 ⋮ 3n - 2 (n \(\in\) N)
3(2n - 2) ⋮ 3n - 2
6n - 6 ⋮ 3n - 2
2.(3n - 2) - 2 ⋮ 3n -2
2 ⋮ 3n - 2
3n - 2 \(\in\) Ư(2) = {-2; -1; 1; 2}
n \(\in\) {0; \(\dfrac{1}{3}\);1; \(\dfrac{4}{3}\)}
Vì n \(\in\) N nên n \(\in\) {0; 1}
Bài 1:
a) n thuộc N
b) để 4n + 5 chia hết cho 5
=> 4n chia hết cho 5
=> n chia hết cho 5
=> n thuộc bội dương của 5
c) để 38 - 3n chia hết cho n
=> 38 chia hết cho n
=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)
...
xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=>...
e) để 3n + 4 chia hết cho n -1
=> 3n - 3 + 7 chia hết cho n - 1
3.(n-1) +7 chia hết cho n - 1
...
Bài 2:
a) để 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
3.(n-1) + 5 chia hết cho n - 1
...
b) n^2 + 2n + 7 chia hết cho n + 2
n.(n+2) + 7 chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) n^2 + 1 chia hết cho n - 1
=> n^2 - n + n - 1 + 2 chia hết cho n - 1
=> (n+1).(n-1) + 2 chia hết cho n -1
=> 2 chia hết cho n - 1
d) n + 3 + 5 chia hết cho n + 3
e) n -1 + 7 chia hết cho n - 1
f) 4n - 2 + 7 chia hết cho 2n - 1
...
3n+2 chia hết cho n-1
n-1 chia hết cho n-1
=> [3n+2]-[3n-3] chia hết cho n-1 =>5 chia hết cho n-1 =>n-1\(\in\)Ư[5]
Ư[5] = {1:5}
=> n \(\in\){0;4}
ta có 3n+2chia hết n-1
=> 3n-3+5 chia hết cho n-1
=>3(n-1) chia hết cho n-1
vì 3(n-1)chia hết cho n-1suy ra 5chia hết cho n-1
*n-1=1 => n=2
*n-1=5 => n=6
nhớ k nha
3n+2 ⋮ 3n+1
3n+1-1+2 ⋮ 3n+1
3n+1+1 ⋮ 3n+1
Vì 3n+1 ⋮ 3n+1 nên 1⋮ 3n+1
⇒3n+1 ∈ Ư(1)
⇒ 3n+1 ∈ ξ 1 ξ
⇒ 3n ∈ ξ 0 ξ
⇒ n ∈ ξ 0ξ
Vậy n=0