b) Chứng minh rằng P = xy(x ^ 4 - 15y) - xy(y ^ 4 + 15y) hết cho 30, với x, y là các số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)
Vì \(x\), \(x+1\)và \(x+2\)là 3 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)
mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)
hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 chia hết xy+1
Lời giải:
$P=xy(x^4-y^4)-30xy^2$
Khi đó muốn cm $P\vdots 30$ thì ta chỉ cần chỉ ra $xy(x^4-y^4)\vdots 30$ với mọi $x,y$ nguyên.
Nếu $x,y$ cùng tính chẵn lẻ thì $x^4, y^4$ cũng cùng tính chẵn lẻ.
$\Rightarrow x^4-y^4$ chẵn
$\Rightarrow xy(x^4-y^4)\vdots 2$
Nếu $x,y$ khác tính chẵn lẻ, nghĩa là 1 trong 2 số là số chẵn.
$\Rightarrow xy\vdots 2\Rightarrow xy(x^4-y^4)\vdots 2$
Vậy $xy(x^4-y^4)\vdots 2(*)$
--------------------------------------
Mặt khác:
Nếu 1 trong 2 số $x,y\vdots 5$ thì hiển nhiên $xy(x^4-y^4)\vdots 5$
Nếu $x,y$ đều không chia hết cho 5 thì $x^2, y^2$ cũng không chia hết cho $5$.
Mà 1 scp khi chia cho 5 dư $0,1,4$ nên lúc này $x^2, y^2$ chia 5 dư $1$ hoặc $4$
$xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)$.
$x^2, y^2$ mà cùng chia 5 dư $1$ hoặc cùng chia $5$ dư $4$ thì $x^2-y^2\vdots 5\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
$x^2, y^2$ mà chia 5 khác số dư thì 1 số chia 5 dư 1, một số chia 5 dư 4 nên $x^2+y^2\vdots 5$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
Vậy tóm lại $xy(x^4-y^4)\vdots 5(**)$
-----------------
Nếu 1 trong 2 số $x,y$ chia hết cho 3 thì hiển nhiên $xy(x^4-y^4)\vdots 3$
Nếu cả 2 số $x,y$ đều không chia hết cho 3 thì $x^2, y^2$ chia 3 dư 1 (tính chất scp)
$\Rightarrow x^2-y^2\vdots 3$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 3 (***)$
Từ $(*); (**); (***)\Rightarrow xy(x^4-y^4)\vdots (2.3.5)$
Hay $xy(x^4-y^4)\vdots 30$
$\Rightarrow P\vdots 30$