K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

(3-căn 13)/2   <x < (3 +căn 13)/2

17 tháng 7 2017

\(\frac{x}{x-2}+\frac{x+2}{x}>2\)

\(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}>2\)

\(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\)

\(2x^2-4>2.x\left(x-2\right)\)

\(x^2-2>x^2-2x\)

\(\Leftrightarrow2>2x\)

\(\Rightarrow x< 1\)

17 tháng 7 2017

\(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}>\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)

=\(\frac{x^2+x^2-4}{x\left(x-2\right)}>\frac{2x^2+2x}{x\left(x-2\right)}\)

=>\(x^2+x^2-4>2x^2+2x\)

\(x^2+x^2-2x^2-2x>4\)

=-2x>4

=x<-2

thick cái nha 

30 tháng 4 2019

a, x+2/5 >=0 <=> x+2 >=0 <=> x>=-2

b. x+2/x-3 <0 <=> 1+5/x-3 <0 <=> 5/x-3 <-1 <=> x-3> -5 <=> x>-2

c. x-1/x-3 >1 <=> 1+ 2/x-3 >1 <=> 2/x-3 >0 <=> x-3 >0 <=> x>3

30 tháng 4 2019

A,x+ 2/5≥=0≤°≥*x+2*≥=0**=2

B,x,+2-3=1/5*3-0=5*3-1=3*-5=2

C,x-1/3+2+3*=2*3/0=x3-*

18 tháng 8 2020

\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)

\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)

\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)

\(\Leftrightarrow6x+12< 10x+20+15\)

\(\Leftrightarrow6x-10x< 20+15-12\)

\(\Leftrightarrow-4x< 23\)

\(\Leftrightarrow x>-\frac{23}{4}\)

Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)

\(\frac{x+2}{4}-x< \frac{1}{3}\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow3x+6-12x< 4\)

\(\Leftrightarrow3x-12x< 4-6\)

\(\Leftrightarrow-9x< -2\)

\(\Leftrightarrow x>\frac{2}{9}\)

Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)

\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))

Xét hai trường hợp

1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)

2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )

Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)

26 tháng 3 2020

giúp mik vs

26 tháng 3 2020

a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)

<=> \(9-6x>10-5x\)

<=> 9 - 10 > -5x + 6x

<=> x < -1

Vậy nghiệm của bất phương trình là x < -1

b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)

<=> \(x-1-2x+2\le3x\)

<=> \(-x+1\le3x\)

<=> \(1\le2x\)

<=> x \(\ge\frac{1}{2}\)

Vậy nghiệm của bất phương trình là x > = 1/2

c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)

<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)

<=> 2x + 1 > 2x - 13

<=> 1 > -13 (luôn đúng)

Vậy nghiệm của bất phương trình luôn đúng với mọi x 

23 tháng 11 2018

olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :)) 

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)

\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)

\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)

\(VT=\sqrt{x+3}-\sqrt{x}=1\)

Dễ r -,- 

28 tháng 2 2016

x+1/x^2+x+1 -(x-1)/x^2+x+1=3/x(x^4+x^2+1)

đkxđ x khác 0

[(x+1)(x^2-x+1)-(x-1)(x^2+x+1)] /(x^2+x+1)(x^2-x+1)=3/x(x^4+x^2+1)

[(x^3+1)-(x^3-1)]/x^4+x^2+1=3/x(x^4+x^2+1)

nhân 2 vế pt cho x(x^4+x^2+1) ta được 

x(x^3+1-x^3+1)=3

<=> 2x=3

<=>x=3/2 (thỏa)

S={3/2}

28 tháng 2 2016

Đặt \(x^2+x+1=a\ne0vàx^2-x+1=b\ne0\)

\(\Rightarrow b-a=-2xvàb+a=2x^2+2\)

    và điều kiện \(x\ne0\)

thì  \(x\left(x^4+x^2+1\right)=xab\)

\(\Rightarrow PT\Leftrightarrow\frac{x+1}{a}-\frac{x-1}{b}=\frac{3}{xab}\)

              \(\Leftrightarrow\frac{bx\left(x+1\right)-ax\left(x-1\right)}{xab}=\frac{3}{xab}\)

             \(\Leftrightarrow bx^2+bx-ax^2+ax=3\)

             \(\Leftrightarrow x^2\left(b-a\right)+x\left(b+a\right)-3=0\)

             \(\Leftrightarrow2x-3=0\)

             \(\Leftrightarrow x=\frac{3}{2}\)(tm)

Vậy \(x=\frac{2}{3}\) là nghiệm của pt

30 tháng 5 2016

PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2. 
Khi đó: x^2 + 9 = t - 9(x-1)/2 
x^2 + 9x = t + 9(x-1)/2 
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2 
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2 
<=> t^2 = (169/4)(x-1)^2 
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1) 
<=> 2t =13x -13 hoặc 2t =-13x + 13 
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13 
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0 

PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là: 
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2. 
 

30 tháng 5 2016

cách 2:đặt x-1=k

pt trở thành (k+1)(k2+2k+10)(k+10)=22k2

<=>(k2+2k+10)(k2+11k+10)=22k2

tự làm tiếp

28 tháng 3 2020

a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)

hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)

\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)

\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)

b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)

Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)

Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được

\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)

(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)

(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)

28 tháng 3 2020

ok đợi nấu ăn xong r làm cho