Cho 2000 số nguyên dương \(a_1\); \(a_2\); \(a_3\); \(a_4\); ...; \(a_{2000}\) thỏa mãn \(\dfrac{1}{a_1}\)+\(\dfrac{1}{a_2}\)+\(\dfrac{1}{a_3}\)+...+\(\dfrac{1}{a_{2000}}\) = 12. Chứng minh rằng ít nhất 2 số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau
\(a_1>a_2>a_3>...>a_{2000}\ge1\)
Khi đó ta có :
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)
( Mâu thuẫn giả thiết )
Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.
Ta có \(a_1< a_2< ...< a_9\)
\(\Rightarrow a_1+...+a_9< 3a_3+3a_6+3a_9\)
Khi đó: \(\frac{a_1+...+a_9}{a_3+a_6+a_9}< \frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}< 3\)(1)
Chứng minh tương tư ta có \(\Rightarrow a_1+...+a_9>3a_1+3a_4+3a_7\)
Khi đó \(\frac{a_1+...+a_9}{a_1+a_4+a_7}>\frac{3\left(a_1+a_4+a_7\right)}{a_1+a_4+a_7}>3\)(2)
Từ (1) và (2) => Điều phải chứng minh.
Chúc bạn học tốt!
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM
ta có
a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0
a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0
Ta có:
(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0
=>(a13+a14)<0
có a12+a13+a14>0=>a12>0
Từ các cmt suy ra a1>0; a12>0; a14<0
=>a1. a14+a12.a12<a1.a12(đpcm)
# HOK TỐT #
ta có
a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0
a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0
Ta có:
(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0
=>(a13+a14)<0
có a12+a13+a14>0=>a12>0
Từ các cmt suy ra a1>0; a12>0; a14<0
=>a1. a14+a12.a12<a1.a12