K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

Bài 16. Một số nguyên tố chia 42 được dư là r. Biết r là hợp số, tìm giá trị của r. Bài 17. Phân tích các số sau thành thừa số nguyên tố và tính số ước của mỗi số 2160, 2130, 3210, 3402. Bài 18. Tìm số tự nhiên x, biết rằng a) Số ước tự nhiên của số 5.7x là 12. b) Số 23 .5x .113 có 20 ước lẻ. c) Số 3 x+1 .5 4 có 9 ước là số chính phương. (Số chính phương là bình phương của một...
Đọc tiếp

Bài 16. Một số nguyên tố chia 42 được dư là r. Biết r là hợp số, tìm giá trị của r.

Bài 17. Phân tích các số sau thành thừa số nguyên tố và tính số ước của mỗi số 2160, 2130, 3210, 3402.

Bài 18. Tìm số tự nhiên x, biết rằng

a) Số ước tự nhiên của số 5.7x là 12.

b) Số 23 .5x .113 có 20 ước lẻ.

c) Số 3 x+1 .5 4 có 9 ước là số chính phương. (Số chính phương là bình phương của một số tự nhiên)

d) Số 2 3 .5 7 .11x−1 .132 có đúng 3 ước nguyên tố.

Bài 19. Tìm các số tự nhiên x, y thỏa mãn 2 x .5 y có 24 ước và x + y = 7

 

Bài 20.

a) Cho số tự nhiên n. Chứng minh rằng nếu số ước của n là lẻ thì n là bình phương của một số tự nhiên khác.

Điều ngược lại có đúng không? Tại sao?

b) Tìm số tự nhiên n có hai chữ số tận cùng là 15 và có đúng 15 ước.

0
27 tháng 12 2014

Thay hướng dẫn tiếp phần b nhé: 

Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)

Suy ra: p+ q+ rchia hết cho 3 mà p+ q+ r>3 suy ra p+ q+ rlà hợp số ( mâu thuẫn đề bài).

Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3

Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3

Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7

Vậy (p;q;r) = (3;5;7) và các hoán vị 

28 tháng 12 2014

b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1 

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3

mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3. 

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7 

Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )

Vậy 3 số nguyên tố cần tìm là 3 5 7 

Nguyễn Vân Huyền đã chọn câu trả lời này

24 tháng 10 2015

Từ 0 đến 50 có 15 số nguyên tố đó là các sô 2;3;5;7;11;13;17;19;23;29;31;37;41;43;47

a) Trong bảng nguyên tố vừa lập trên có duy nhất 1 số chẵn là số 2.

b) Mọi số nghuyên tố trên đều có chung 1 ước là 1 và có chung 1 ước là 0.

7 tháng 2 2017

ko ai giúp ak

16 tháng 4 2021

hok tốt

20 tháng 7 2016

\(a=p_1^m.p_2^n\Rightarrow a^3=p_1^{3m}.p_2^{3m}.\) Số ước của \(a^3\)là ( 3m + 1 ) ( 3n + 1 ) = 40 , suy ra m = 1 , n = 3 ( hoặc m = 3 , n = 1 )

Số \(a^2=p_1^{2m}.p_2^{2n}\) có số ước là ( 2m + 1 ) ( 2n + 1 ) = 3 . 7 = 21 ( ước )

ủng hộ mk nhé k nhiều vô .