Bài 1:
a, Đọc các kí hiệu: \(\in,\notin,\subset,\varnothing,\supset.\)
b, Cho ví dụ sử dụng các kí hiệu trên.
Bài 2:
So sánh 2 biểu thức \(A\)và \(B\), biết rằng:
\(A=\frac{2010}{2011}+\frac{2011}{2012}\); \(B=\frac{2010+2001}{2011+2012}\).
Bài 3:
Tính:
a,\(1\frac{13}{15}.\left(0,5\right)^2.3+\left(\frac{8}{15}-1\frac{19}{60}\right):1\frac{23}{24}\);
b,\(\frac{\left(\frac{11^2}{200}+0,415\right):0,01}{\frac{1}{12}-37,25+3\frac{1}{6}}\).
2) \(\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
\(\Rightarrow A>B\)
a) \(1\frac{13}{15}.\left(0,5\right)^2.3+\left(\frac{8}{15}-1\frac{19}{60}\right):1\frac{23}{24}\)
\(=\frac{28}{15}.\frac{1}{4}.3+-\frac{47}{60}:\frac{47}{24}\)
\(=\frac{7}{5}-\frac{2}{5}\)
\(=1\)
b)\(\frac{\left(\frac{11^2}{200}+0,415\right):0,01}{\frac{1}{12}-37,25+3\frac{1}{6}}\)
\(=\frac{\left(\frac{121}{200}+0,415\right):0,01}{\frac{1}{12}-37,25+\frac{19}{6}}\)
\(=\frac{\frac{51}{50}:\frac{1}{100}}{-34}\)
\(=\frac{102}{-34}\)
\(=-3\)