S = 1 x 2 x 3 x 4 + 2 x 3 x 4 x5 + ... + 2015 x 2016 x 2017 x 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
(2019-2018+2017-.....-2) x (100 -25x2x2)
=(2019-2018+2017-.....-2) x (100 -25x4)
=(2019-2018+2017-.....-2) x 0
=0
*like phát
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-25x4)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-100)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x0
=0
x+2015/5 + x+2016/4=x+2017/3 + x+2018/2
\(\Rightarrow\frac{x+2015}{5}+1+\frac{x+2016}{4}+1=\frac{x+2017}{3}+1+\frac{x+2018}{2}+1\)
\(\Rightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)
\(\Rightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Rightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Rightarrow x+2020=0\).Do \(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)
\(\Rightarrow x=-2020\)
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy : \(x=-2020\)
Chúc bạn học tốt !!
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)
Vậy x = -2020
b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)
Vậy x = -2010
\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)
\(\Rightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)
\(\Rightarrow\frac{x-1-2018}{2018}+\frac{x-2-2017}{2017}=\frac{x-3-2016}{2016}+\frac{x-4-2015}{2015}\)
\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)
\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}-\frac{x-2019}{2016}-\frac{x-2019}{2015}=0\)
\(\Rightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\)
\(\Rightarrow x-2019=0\)
\(\Rightarrow x=2019\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)
<=>\(\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{2017}-1+\dfrac{x+4}{2018}-1\)
<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)
<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)
<=>\(\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)
vì 1/2015+1/2016-1/2017-1/2018 khác 0
=>x-2014=0<=>x=2014
vậy.....................
chúc bạn học totts ^^
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)
\(\Leftrightarrow\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{x017}-1+\dfrac{x+4}{2018}-1\)
\(\Leftrightarrow\dfrac{x+1-2015}{2015}+\dfrac{x+2-2016}{2016}=\dfrac{x+3-2017}{2017}+\dfrac{x+4-2018}{2018}\)\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)
\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)
Vì: \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)
\(\Rightarrow x-2014=0\)
\(\Rightarrow x=2014\)
Vậy........
\(\frac{x+4}{2015}+\frac{x+3}{2016}=\frac{x+2}{2017}+\frac{x+1}{2018}\)
\(\Rightarrow\frac{x+4}{2015}+1+\frac{x+3}{2016}+1=\frac{x+2}{2017}+1+\frac{x+1}{2018}+1\)
\(\Rightarrow\frac{x+4+2015}{2015}+\frac{x+3+2016}{2016}=\frac{x+2+2017}{2017}+\frac{x+1+2018}{2018}\)
\(\Rightarrow\frac{x+2019}{2015}+\frac{x+2019}{2016}-\frac{x+2019}{2017}-\frac{x+2019}{2018}=0\)
\(\Rightarrow\left(x+2019\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
=> x + 2019 = 0
=> x = -2019
Vậy x = -2019