tìm x và y biết
\(\frac{x}{y}\)=\(\frac{2}{3}\)và 2x+y =-14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{8}=\frac{2x+y-3}{6+4-3}=\frac{-14}{7}=-2\)
\(\frac{x}{3}=-2\Rightarrow x=-2.3=-6\)
\(\frac{y}{4}=-2\Rightarrow y=-2.4=-8\)
\(\frac{z}{8}=-2\Rightarrow z=-2.8=-16\)
k nha
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)(1)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)(2)
Từ (1) ; (2) ta có : \(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{2x+y-3}{2.18+24-3}=-\frac{14}{57}\)
\(\Leftrightarrow\frac{x}{18}=-\frac{14}{57};\Leftrightarrow\frac{y}{24}=-\frac{14}{57};\frac{z}{32}=-\frac{14}{57}\)
Tự tính, hỏng mt r
1) Theo đề bài ta có:
\(\frac{x}{5}=\frac{y}{2}\) và x + y = 14
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
Khi đó:\(\begin{cases}x=5.2=10\\y=2.2=4\end{cases}\)
Vậy x = 10 ; y = 4
2) \(\frac{x}{y}=\frac{4}{7}\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
\(\Rightarrow x.y=28\leftrightarrow4k.7k=28\)
\(28k^2=28\)
\(k^2=1\)
\(k=1;-1\)
+) \(k=1\Rightarrow\begin{cases}x=4\\y=7\end{cases}\)
+\(k=-1\Rightarrow\begin{cases}x=-4\\y=-7\end{cases}\)
Chúc bạn học tốt
1) Có: \(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
\(\Leftrightarrow\begin{cases}x=5\cdot2=10\\y=2\cdot2=4\end{cases}\)
2)Có: \(\frac{x}{y}=\frac{4}{7}\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Mà \(xy=28\Leftrightarrow4k\cdot7k=28\Rightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
+) Vơi k =1 thì x=4 ;y=7
+)Với k=-1 thì x=-1;y=-7
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
bn dào khánh linh có vẻ jioi, mk làm 1 câu rùi bn lam tip, nếu k lam dc nt cho mk
a) x/6 = y/10
bn bình phuong tlt trên va nhân 2 ty số đầu mhe:
x/6 = x2/36 = 2x2/72
y/10 = y2/100
đến đây thì dễ rùi, nếu hiu dc thi cám ơn mk đi vi mk dăt tay bn
cung nhau di tren con dg tuoi sang
a)10x=6y=>\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)
b) \(\frac{x^3}{8}=\frac{x}{2}\)
\(\frac{y^3}{64}=\frac{y}{4}\)
\(\frac{z^3}{216}=\frac{z}{6}\)
=>........ áp dụng t.chất dãy tỉ số = nhau
c)
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=>\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=>6x=12( cùng tử)
=>x=2
a.
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{14}{17}\)
\(\frac{2x}{38}=\frac{14}{17}\Rightarrow x=\frac{266}{17}\)
\(\frac{y}{21}=\frac{14}{17}\Rightarrow y=\frac{294}{17}\)
b.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\frac{x^2}{9}=4\Rightarrow x=\pm6\)
\(\frac{y^2}{16}=4\Rightarrow y=\pm8\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
ta có : x/y=2/3
=> x/2=y/3=2x/4=y/3
=> 2x/4=y/3=2x+y/4+3=-14/7=-2
+, x/2=-2 => x=-4
+, y/3=-2 => y=-6
* Theo đề bài, ta có : \(\frac{x}{y}=\frac{2}{3}or\frac{x}{2}=\frac{y}{3}\)và 2x+y=-14 (1)
* từ (1) ta đc: \(\frac{2x}{4}=\frac{y}{3}\)và\(2x+y=-14\)
* Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{2x}{4}=\frac{y}{3}=\frac{2x+y}{4+3}=\frac{-14}{7}=-2\)
* Vậy \(x=-2\Rightarrow x=-2.2=-4\)
\(y=-2\Rightarrow y=-2.3=-6\)