TÌM SỐ tự nhiên n sao cho
3n : 32 = 243
b)25\(\le\)5 <3125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên n:
Ta có: \(3^n:3^2=243\)
\(\Rightarrow3^n:3^2=3^5\)
\(\Rightarrow3^{n-2}=3^5\)
\(\Rightarrow n-2=5\)
\(\Rightarrow n=7\)
Vậy \(n=7\).
Còn câu b không có đề...
\(25\le5^n< 3125\)
\(\Rightarrow5^2\le5^n< 5^5\)
\(\Rightarrow2\le n< 5\)
Vậy \(n=\left\{2;3;4\right\}\)
a) \(2^n:4=16\Rightarrow2^n:2^2=2^4\Rightarrow2^{n-2}=2^4\Rightarrow n-2=4\Rightarrow n=6\)
b) \(6\cdot2^n+3\cdot2^n=9\cdot2^9\)
=> \(\left(6+3\right)\cdot2^n=9\cdot2^9\)
=> \(9\cdot2^n=9\cdot2^9\Rightarrow n=9\)
c) \(3^n:3^2=243\)
=> \(3^{n-2}=3^5\)
=> n - 2 = 5 => n = 7
d) 25 < 5n < 3125
=> 52 < 5n < 55
=> n \(\in\){3;4}
câu 1:
28=256
2.53=2.125=250
vì 256 > 250 nên 28> 2.53
câu 2:
a.3n: 9=243
a.3n= 243 : 9
a.3n=27.........(đến đây thì (@_@))
b) n= 3 hoặc 4.
a) \(9< 3^x< 243\)
\(\Leftrightarrow3^2< 3^x< 3^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
b) Sửa đề: \(3^4.3^x\div9=27\)
\(\Leftrightarrow3^{x+4}=3\)
\(\Rightarrow x+4=1\)
\(\Rightarrow x=-3\)
c) \(3^x\div3^2=243\)
\(\Leftrightarrow3^{x-2}=3^5\)
\(\Rightarrow x-2=5\)
\(\Rightarrow x=7\)
d) \(25< 5^x< 3125\)
\(\Leftrightarrow5^2< 5^x< 5^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(2^x-64=2^6\)
\(\Leftrightarrow2^x=64+64=128\)
\(\Leftrightarrow2^x=2^7\)
\(\Rightarrow x=7\)
f) \(2^x\div16=128\)
\(\Leftrightarrow2^x=2^7.2^4\)
\(\Leftrightarrow2^x=2^{11}\)
\(\Rightarrow x=11\)
a) 27. 3n=243. 3n
=243:27
=9. có 3n
=9=32.
=>3n=32. => n=2.
a) Ta có : 2 x : 2 2 = 2 5 nên x = 7.
b) Ta có: 3 x : 3 2 = 3 5 nên x = 7.
c) Ta có : 4 4 : 4 x = 4 2 nên x = 2.
d) Ta có : 5 x : 5 2 = 5 2 nên x = 4,
e) Ta có: 5 x + 1 : 5 = 5 4 nên x = 4.
f) Ta có : 4 2 x - 1 : 4 = 4 2 nên x = 2
3n:32=243
3n:32=35
3n=35x32
3n=37
=>n=7
a)\(\frac{3^n}{3^2}=243\)
\(3^{n-2}=243\)
\(3^{n-2}=3^5\)
\(\Rightarrow n=7\)