1)So sánh:
A=\(\frac{3}{8^3}\) +\(\frac{7}{8^4}\) và B=\(\frac{7}{8^3}\)+\(\frac{3}{8^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=17/4096
B=-53/4096
vayA>B vi so am luon be hon so duong
OK
\(D=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3.8}{8^4}+\frac{7}{8^4}=\frac{24+7}{8^4}=\frac{31}{8^4}\)
\(C=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{56}{8^4}=\frac{59}{8^4}\)
Mà 59>31 => D<C
\(D=\frac{3}{8^3}+\frac{7}{8^{\text{4}}}=\frac{3}{8^3}+\left(\frac{4}{8^4}+\frac{3}{8^4}\right)\\ \)
\(C=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
vì \(\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}>\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\\ =>D>C\)
ta co : A = 3/8^3+3/8^4+4/8^4
B=3/8^3+3/8^4+4/8^3
VI 4/8^4 <4/8^3 NEN A<B
\(c)\) \(C=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}\)
\(C=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{193}\right)}\)
\(C=\frac{2}{3}\)
Bạn Cô nàng Thiên Bình làm đúng hết òi =.=
a=7.[1/8+1/27-1/49]
------------------------
11.[1/8+1/27-1/49]
=7/11
cau b,c tuong tu nha h mk
b/ Ta có
\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)
\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
c/ Đặt \(10^7=a\)thì ta có
\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)
Giả sử A>B thì ta có
\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)
\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)
\(\Leftrightarrow617a+313>0\)(đúng)
Vậy A>B
c/ Đặt \(10^{1991}=a\)thì ta có
\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)
Giả sử A>B thì ta có
\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)
\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)
\(\Leftrightarrow-81a>0\)(sai)
Vậy A < B
a/ Thì quy đồng là ra nhé
a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh