Cho \(x=\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13+3}}\right):\sqrt{\sqrt{13}+2}}\)
Tính \(A=x^2+2017x-2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{\left(5+\sqrt{2}\right)^2\sqrt{\left(5-\sqrt{2}\right)^2}-\left(5-\sqrt{2}\right)^2\sqrt{\left(5+\sqrt{2}\right)^2}}{\frac{\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}-2\right)}+\sqrt{\left(\sqrt{13}+3\right)\left(\sqrt{13}-2\right)}}{\sqrt{13-4}}}\)
\(=\frac{\left(5+\sqrt{2}\right)\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)-\left(5-\sqrt{2}\right)\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}{\frac{\sqrt{19-5\sqrt{13}}+\sqrt{7+\sqrt{13}}}{3}}\)
\(=\frac{69\left(5+\sqrt{2}-5+\sqrt{2}\right)}{\frac{1}{\sqrt{2}}\left(\sqrt{38-10\sqrt{13}}+\sqrt{14+2\sqrt{13}}\right)}=\frac{276}{\sqrt{\left(5-\sqrt{13}\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}}\)
\(=\frac{276}{5-\sqrt{13}+\sqrt{13}+1}=46\)
\(\Rightarrow A=...\)
a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)
Ta có
\(\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)^2\)
\(=27+10\sqrt{2}+27-10\sqrt{2}-2\sqrt{\left(27+10\sqrt{2}\right)\left(27-10\sqrt{2}\right)}\)
\(=54-2\sqrt{529}=8\)
\(\Rightarrow\) \(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}=\sqrt{8}=2\sqrt{2}\)
Xét tử số
\(\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}\)
\(=\left(\sqrt{27+10\sqrt{2}}.\sqrt{27-10\sqrt{2}}\right)\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23.2\sqrt{2}=46\sqrt{2}\)
Lại có \(\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2\)
\(=\sqrt{13}-3+\sqrt{13}+3+2\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}\)
\(=2\sqrt{13}+2\sqrt{4}=2\sqrt{13}+4\)
ta bình phương mẫu số
\(\left(\frac{\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}}{\sqrt{\sqrt{13}+2}}\right)^2=\frac{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2}{\sqrt{13}+2}\)
\(=\frac{2\sqrt{13}+4}{\sqrt{13}+2}=2\)
Vậy mẫu \(=\sqrt{2}\)
Vậy \(x=\frac{46\sqrt{2}}{\sqrt{2}}=46\) thay vào ta đc A = 92880