Phân tích các đa (tách hạng tử thành nhiều hạng tử)
a)(x-y)2 + 4(x-y) - 12
b) a4 + a2 - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
\(x^2-x-xy-2y^2+2y\)
\(=x^2-x-2xy+xy-2y^2+2y\)
\(=\left(-2y^2-2xy+2y\right)+\left(xy+x^2-x\right)\)
\(=2y\left(-y-x+1\right)-x\left(-y-x+1\right)\)
\(=\left(2y-x\right)\left(-y-x+1\right)\)
a)
\(x^3-7x-6=x^3+1-7x-7\)
= \(\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-x+1-7\right)\)
= \(\left(x+1\right)\left(x^2-x-6\right)\)
b)
\(x^3-5x^2-14x=x^3+2x^2-7x^2-14x\)
= \(x^2\left(x+2\right)-7x\left(x+2\right)\)
= \(\left(x^2-7x\right)\left(x+2\right)\)
= \(x\left(x-7\right)\left(x+2\right)\)
a,x^3 -x-6x-6 = x(x^2 -1)-6(x+1)= x(x-1)(x+1)-6(x+1)=(x+1)(X^2-x-6)=(x+1)(x^2+2x-3x-6)=(x+1)(x(x+2)-3(x+2))=(x+1)(x+2)(x-3)
b,x(x^2-5x-14)=x(x^2+2x-7x-14)=x(x(x+2)-7(x+2))=x(x+2)(x-7)
f)\(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)
i)\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)
h)\(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-4\right)\left(x-3\right)\)
g)\(x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)
f)\(x^2-5x-14=x^2-7x+2x-14\)
\(=\left(x+2\right)\left(x-7\right)\)
i)\(x^2-7x+10=x^2-5x-2x+10\)
\(=\left(x-2\right)\left(x-5\right)\)
h)\(x^2-7x+12=x^2-4x-3x+12\)
\(=\left(x-3\right)\left(x-4\right)\)
g)\(x^2+6x+5=x^2+x+5x+5\)
\(=\left(x+5\right)\left(x+1\right)\)
a: x^2+4xy-21y^2
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
=5x(x+y)+y(x+y)
=(x+y)(5x+y)
c: \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
=x(x+5y)-3y(x+5y)
=(x+5y)(x-3y)
d: \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
=x(x-2y)-5y(x-2y)
=(x-2y)(x-5y)
a) \(x^2+4xy-21y^2\)
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(5x+y\right)\left(x+y\right)\)
c) \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
\(=x\left(x+5y\right)-3y\left(x+5y\right)\)
\(=\left(x+5y\right)\left(x-3y\right)\)
d) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-5y\right)\left(x-2y\right)\)
a) 8x2 - 2x - 1
=8x2+2x-4x-1
=2x.(4x+1)-(4x+1)
=(4x+1)(2x-1)
b) x2 - y2 + 10x - 6y + 16
=x2+10x+25-y2-6y-9
=(x+5)2-(y+3)2
=(x+5-y-3)(x+5+y+3)
=(x-y+2)(x+y+8)
a: \(4x^2-x-5=\left(4x-5\right)\left(x+1\right)\)
b: \(x^2-2x-15=\left(x-5\right)\left(x+3\right)\)
Cách tách hạng tử như sau:
Cho đa thức \(ax^2+bx+c\)
Ta tách hạng tử \(bx=mx+nx\)sao cho \(m.n=a.c\)
Sau đó gộp lại ta được \(\left(ax^2+mx\right)+\left(nx+c\right)\)
Tiếp túc đặt nhân tử chung ta được một tích.
Trên đây là cách tách hạng tử, bạn áp dụng vào làm nhé!
Ta có : x2 + 2xy - 15y2
= x2 - 3xy + 5xy - 15y2
= x(x - 3y) + 5y(x - 3y)
= (x - 3y)(x + 5y)
(x-y)^2+6(x-y)-2(x-y)-12=(x-y)((x-y)+6) -2((x-y)+6)=(x-y+6)(x-y-2)
a^4-a^2+2a^2-2=a^2(a^2-1)+2(a^2-1)=(a^2-1)(a^2+2)
a)
\(\left(x-y\right)^2+4\left(x-y\right)-12=\left(x-y\right)^2+4\left(x-y\right)+4-16\)
= \(\left(x-y+2\right)^2-16\)
= \(\left(x-y+2-4\right)\left(x-y+2+4\right)\)
= \(\left(x-y-2\right)\left(x-y+6\right)\)
b)
\(a^4+a^2-2\)
= \(\left(a^2+\frac{1}{2}\right)^2-\frac{9}{4}\)
= \(\left(a^2+\frac{1}{2}-\frac{3}{2}\right)\left(a^2+\frac{1}{2}+\frac{3}{2}\right)\)
= \(\left(a^2-1\right)\left(a^2+2\right)\)