K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Ta có: \(\frac{{AE}}{{AF}} = \frac{3}{4};\frac{{AD}}{{AC}} = \frac{6}{8} = \frac{3}{4}\);

Xét \(\Delta ADE\) và \(\Delta ACF\) có:

\(\frac{{AE}}{{AF}} = \frac{{AD}}{{AC}} = \frac{3}{4}\)

\(\widehat {EAD} = \widehat {FAC}\) (hai góc đối đỉnh)

Do đó, \(\Delta ADE\backsim\Delta ACF\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì \(\Delta ADE\backsim\Delta AMN\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}}\end{array} \right.\)

Vì \(DE\) là đường trung bình của tam giác \(AMN\)nên \(DE = \frac{1}{2}MN\)

\( \Rightarrow \left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}} = \frac{1}{2}\end{array} \right.\)

\( \Rightarrow AM = 2AD;AN = 2AE;MN = 2DE\)

Lại có, \(\Delta AMN\backsim\Delta ABC\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\end{array} \right.\)

Vì \(MN\) là đường trung bình của tam giác \(ABC\)nên \(MN = \frac{1}{2}BC\)

\(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\end{array} \right.\)

\( \Rightarrow AB = 2AM;AC = 2AN;BC = 2MN\)

Vì tam giác \(\Delta ADE\backsim\Delta AMN,\Delta AMN\backsim\Delta ABC,\) nên \(\Delta ADE\backsim\Delta ABC\)

Tỉ số đồng dạng là: \(\frac{{AD}}{{AB}} = \frac{{\frac{{AM}}{2}}}{{2AM}} = \frac{1}{4}\).

Vậy tỉ số đồng dạng là \(\frac{1}{4}\).

ủa?nhanh vậy?

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H1. Chứng minh tam giác ABE và tam giác ACF đồng dạngXét \(\Delta ABE\) và \(\Delta ACF\) :\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )\(\widehat{A}\) chung\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)Xét tam giác AEF và tam giác...
Đọc tiếp

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H

1. Chứng minh tam giác ABE và tam giác ACF đồng dạng

Xét \(\Delta ABE\) và \(\Delta ACF\) :

\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)

Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Xét tam giác AEF và tam giác ABC:

\(\widehat{A}\) chung

\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)

3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)

Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

 

3
NV
22 tháng 4 2021

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

NV
22 tháng 4 2021

undefined

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(ABC\) ta có:

\(DE//BC\) và \(D,E\) cắt \(AB;AC\) tại \(D;E\).

Do đó, \(\Delta ADE\backsim\Delta ABC\) (định lí)

b) Vì \(\Delta ADE\backsim\Delta ABC\) nên \(\frac{{AD}}{{AB}} = \frac{{DE}}{{BC}}\) (cách cặp cạnh tương ứng có cùng tỉ lệ).

Thay số, \(\frac{{16}}{{30}} = \frac{{22}}{{BC}} \Rightarrow BC = \frac{{22.30}}{{16}} = 41,25\)

Vậy \(BC = 41,25m\).

28 tháng 3 2019

Xét tg ABD vuông tại  D và tg ACE vuông tại E

có: ^A chung

=> tg ABD ~ tg ACE (gn)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\)

xét tg ADE và tg ABC

có: AD/AB = AE/AC (cmt)

^A chung

=> tg ADE ~ tg ABC (c-g-c)

hình bn tự kẻ nha

8 tháng 8 2020

I don't know it

8 tháng 7 2019

Độ dài BM và MC đều là:

28 : 2 = 14(cm)

Diện tích hình tam giác EBM là:

(28 x 14) : 2 = 196 (cm2)

Diện tích hình tam giác DMC là:

(84 x 14) : 2 = 588 (cm2)

Diện tích hình tam giác EDM là:

1568 - (196 + 588) = 784 (cm2)

14 tháng 9 2023

a) Vì \(BM\)là đường cao nên \(\widehat {AMB} = 90^\circ \); vì \(CN\)là đường cao nên \(\widehat {ANC} = 90^\circ \)

Xét tam giác \(AMB\) và tam giác \(ANC\) có:

\(\widehat A\) (chung)

\(\widehat {ANB} = \widehat {ANC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AMB\backsim\Delta ANC\) (g.g).

Suy ra, \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Do đó, \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) (tỉ lệ thức)

Xét tam giác \(AMN\) và tam giác \(ABC\) có:

\(\widehat A\) (chung)

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) (chứng minh trên)

Suy ra, \(\Delta AMN\backsim\Delta ABC\) (c.g.c).

b) Xét tam giác \(AMN\) có \(AI\) là đường phân giác của \(\widehat {MAN}\left( {I \in MN} \right)\).

Theo tính chất đường phân giác ta có:

\(\frac{{IM}}{{IN}} = \frac{{AM}}{{AN}}\)

Xét tam giác \(ABC\) có \(AK\) là đường phân giác của \(\widehat {BAC}\left( {K \in BC} \right)\).

Theo tính chất đường phân giác ta có:

\(\frac{{BK}}{{KC}} = \frac{{AB}}{{AC}}\)

Mà \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (chứng minh trên) nên \(\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\) (điều phải chứng minh).