Trong Hình 10, cho biết \(ABCD\) là hình bình hành.
a) Chứng minh rằng \(\Delta IEB\backsim\Delta IDA\).
b) Cho biết \(CB = 3BE\) và \(AI = 9cm\). Tính \(DC\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(MPQ\)có \(EF//MQ\) nên \(\Delta MPQ\backsim\Delta EPF\) (định lí) (1)
Xét tam giác \(MPQ\)có \(DC//MP\) nên \(\Delta MPQ\backsim\Delta DCQ\) (định lí) (2)
Từ (1) và (2) \(\Delta EPF\backsim\Delta DCQ\) (tính chất tam giác đồng dạng)
b) Xét tam giác \(EPF\)có \(IC//EP\) nên \(\Delta ICF\backsim\Delta EPF\) (định lí) (3)
Từ (1) và (3) suy ra, \(\Delta ICF\backsim\Delta MPQ\).
a) Vì \(MN//BC\) nên \(\widehat {MNB} = \widehat {ABC}\) (hai góc so le trong)
Vì \(MB//AC\) nên \(\widehat {MNB} = \widehat {ABC}\) (hai góc so le trong)
Xét tam giác \(BNM\) tam giác \(ABC\) ta có:
\(\widehat {MNB} = \widehat {ABC}\) (chứng minh trên)
\(\widehat {MNB} = \widehat {ABC}\) (chứng minh trên)
Do đó, \(\Delta BNM\backsim\Delta ABC\) (g.g)
b) Vì \(\Delta BNM\backsim\Delta ABC\) nên \(\widehat M = \widehat C = 48^\circ \) (hai góc tương ứng).
a) Xét tam giác \(ABE\) có:
\(AB//CD\) và \(C,D\) cắt \(BE;AE\) lần lượt tại \(C,D\).
Do đó, \(\Delta AEB\backsim\Delta DEC\) (định lí)
b) Vì \(\Delta AEB\backsim\Delta DEC\) nên \(\frac{{AE}}{{ED}} = \frac{{AB}}{{CD}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).
Thay số ta được:
\(\frac{{x - 2}}{{10}} = \frac{3}{5} \Rightarrow x - 2 = \frac{{10.3}}{5} = 6 \Rightarrow x = 6 + 2 = 8\)
Vậy \(x = 8\).
a) Ta có: \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\end{array} \right.\).
b) Xét tam giác \(DEF\) có:
\(\widehat D + \widehat E + \widehat F = 180^\circ \) (tổng ba góc trong một tam giác).
Ta có: \(\widehat D = 78^\circ ;\widehat E = 57^\circ \) thay số ta được
\(78^\circ + 57^\circ + \widehat F = 180^\circ \Rightarrow \widehat F = 180^\circ - 78^\circ - 57^\circ = 45^\circ \)
Ta có: \(\Delta DEF\backsim\Delta D'E'F' \Rightarrow \widehat D = \widehat {D'};\widehat E = \widehat {E'};\widehat F = \widehat {F'}\) (các góc tương ứng bằng nhau)
Do đó, \(\widehat D = \widehat {D'} = 78^\circ ;\widehat F = \widehat {F'} = 45^\circ \).
c) Ta có \(\Delta MNP\backsim\Delta M'N'P' \Rightarrow \frac{{MN}}{{M'N'}} = \frac{{MP}}{{M'P'}} = \frac{{NP}}{{N'P'}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).
Với \(MP = 10;NP = 6;M'N' = 15;N'P' = 12\) thay vào ta được:
\( \Rightarrow \left\{ \begin{array}{l}\frac{{MN}}{{15}} = \frac{1}{2}\\\frac{{10}}{{M'P'}} = \frac{1}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}MN = \frac{{15.1}}{2} = 7,5\\M'P' = \frac{{10.2}}{1} = 20\end{array} \right.\).
Vậy \(MN = 7,5;M'P' = 20\).
Ta có: \(\frac{{AE}}{{AF}} = \frac{3}{4};\frac{{AD}}{{AC}} = \frac{6}{8} = \frac{3}{4}\);
Xét \(\Delta ADE\) và \(\Delta ACF\) có:
\(\frac{{AE}}{{AF}} = \frac{{AD}}{{AC}} = \frac{3}{4}\)
\(\widehat {EAD} = \widehat {FAC}\) (hai góc đối đỉnh)
Do đó, \(\Delta ADE\backsim\Delta ACF\)(c.g.c)
a) Xét \(\Delta AMH\) và \(\Delta AHB\) có:
\(\widehat {HAM}\) chung (do \(\widehat {HAM}\) cũng là \(\widehat {HAB}\))
\(\widehat {AMH} = \widehat {AHB} = 90^\circ \) (do \(HM \bot AB\) và \(AH\) là đường cao)
Do đó, \(\Delta AMH\backsim\Delta AHB\) (g.g).
b) Vì \(\Delta AMH\backsim\Delta AHB\) nên \(\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra \(AM.AB = A{H^2}\) (1)
- Xét \(\Delta ANH\) và \(\Delta AHC\) có:
\(\widehat {HAN}\) chung (do \(\widehat {HAN}\) cũng là \(\widehat {HAC}\))
\(\widehat {ANH} = \widehat {AHC} = 90^\circ \) (do \(HN \bot AC\) và \(AH\) là đường cao)
Do đó, \(\Delta ANH\backsim\Delta AHC\) (g.g).
Vì \(\Delta ANH\backsim\Delta AHC\) nên \(\frac{{AN}}{{AH}} = \frac{{AH}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra \(AN.AC = A{H^2}\) (2)
Từ (1) và (2) suy ra, \(AM.AB = AN.AC\)(điều phải chứng minh).
c) Từ câu b ta có:
\(AM.AB = AN.AC \Rightarrow \frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\) (tỉ lệ thức)
Xét \(\Delta ANM\)và \(\Delta ABC\) ta có:
\(\widehat A\) chung
\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\) (chứng minh trên)
Do đó, \(\Delta ANM\backsim\Delta ABC\)(c.g.c)
d) Áp dụng định lí Py- ta – go cho tam giác \(ABC\) vuông tại \(A\) ta có:
\(B{C^2} = A{B^2} + A{C^2} = {9^2} + {12^2} = 225 \Rightarrow BC = 15cm\)
Diện tích tam giác \(ABC\) là: \({S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\)
\( \Rightarrow AH.BC = AB.AC\)
\( \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{9.12}}{{15}} = 7,2cm\).
Ta có: \(A{H^2} = AM.AB = AM.9 = 7,{2^2} \Rightarrow AM = \frac{{7,{2^2}}}{9} = 5,76cm\)
\(A{H^2} = AN.AC = AN.12 = 7,{2^2} \Rightarrow AN = \frac{{7,{2^2}}}{{12}}4,32cm\).
Diện tích tam giác vuông \(AMN\) là:
\({S_{AMN}} = \frac{1}{2}AM.AN = \frac{1}{2}.5,76.4,32 = 12,4416c{m^2}\).
Vậy diện tích tam giác \(AMN\) là 12,4416cm2.
b
Δ ABD ⊥ tại D có DE là đường cao.
=> \(AD^2=AE.AB\) (hệ thức lượng) (1)
Δ ADC ⊥ tại C có DC là đường cao.
=> \(AD^2=AF.AC\) (hệ thức lượng) (2)
Từ (1), (2) suy ra: \(AE.AB=AF.AC\left(=AD^2\right)\)
Xét Δ AEF và Δ ACB có:
\(\widehat{EAF}=\widehat{CAB}\) (góc chung)
\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\left(cmt\right)\)
=> Δ AEF đồng dạng Δ ACB (c.g.c)
Vì \(\Delta ADE\backsim\Delta AMN\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}}\end{array} \right.\)
Vì \(DE\) là đường trung bình của tam giác \(AMN\)nên \(DE = \frac{1}{2}MN\)
\( \Rightarrow \left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}} = \frac{1}{2}\end{array} \right.\)
\( \Rightarrow AM = 2AD;AN = 2AE;MN = 2DE\)
Lại có, \(\Delta AMN\backsim\Delta ABC\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\end{array} \right.\)
Vì \(MN\) là đường trung bình của tam giác \(ABC\)nên \(MN = \frac{1}{2}BC\)
\(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\end{array} \right.\)
\( \Rightarrow AB = 2AM;AC = 2AN;BC = 2MN\)
Vì tam giác \(\Delta ADE\backsim\Delta AMN,\Delta AMN\backsim\Delta ABC,\) nên \(\Delta ADE\backsim\Delta ABC\)
Tỉ số đồng dạng là: \(\frac{{AD}}{{AB}} = \frac{{\frac{{AM}}{2}}}{{2AM}} = \frac{1}{4}\).
Vậy tỉ số đồng dạng là \(\frac{1}{4}\).
a) Xét \(\Delta ABD\) và \(\Delta CBD\)có:
DA=DC(gt)
BD chung
BA=BC
Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)
b) Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)
Theo định lí tổng ba góc trong tam giác BCD, ta có:
\(\begin{array}{l}\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\\ \Rightarrow {90^o} + {30^o} + \widehat {DBC} = {180^o}\\ \Rightarrow \widehat {DBC} = {60^o}\end{array}\)
Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) ( 2 góc tương ứng)
\(\Rightarrow \widehat {ABD} = \widehat {CBD} = {60^o}\\\Rightarrow \widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)
a) Do \(ABCD\) là hình bình hành nên \(BC//AD \Rightarrow EB//AD\)
Xét tam giác \(IDA\) có
\(EB//AD;EB\) cắt \(AI;ID\) tại \(B;E\).
Do đó, \(\Delta IEB\backsim\Delta IDA\) (định lí)
b) Ta có: \(\Delta IEB\backsim\Delta IDA \Rightarrow \frac{{IB}}{{IA}} = \frac{{BE}}{{DA}}\) (hai cặp cạnh tương ứng tỉ lệ).
Mà \(CB = AD;CB = 3BE \Rightarrow AD = 3BE;AI = 9\) nên ta có:
\(\frac{{IB}}{9} = \frac{{BE}}{{3BE}} = \frac{1}{3} \Rightarrow IB = \frac{{9.1}}{3} = 3\).
Vậy \(IB = 3cm.\)