Tính nhanh:
\(\dfrac{3}{2\cdot5}\)+\(\dfrac{3}{5\cdot8}\)+\(\dfrac{3}{8\cdot11}\)+\(\dfrac{3}{11\cdot14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{3}{1}\).(\(\dfrac{3}{2.5}\)+\(\dfrac{3}{5.8}\)+...+\(\dfrac{3}{98.101}\))
A=3.(\(\dfrac{1}{2}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\)-\(\dfrac{1}{101}\))
A=3.(\(\dfrac{1}{2}\)-\(\dfrac{1}{101}\))
A=3.\(\dfrac{98}{202}\)
A=\(\dfrac{294}{202}\)=\(\dfrac{147}{101}\)
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)
\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)
\(3A=\dfrac{24}{49}\)
\(A=\dfrac{24}{49}:3\)
\(A=\dfrac{8}{49}\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(\Rightarrow\dfrac{M}{2}=\dfrac{6:2}{2.5}+...+\dfrac{6:2}{47.50}\)
\(=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{47.50}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{47}-\dfrac{1}{50}\)
\(=\dfrac{1}{2}-\dfrac{1}{50}\)
\(=\dfrac{12}{25}\)
\(\Rightarrow M=\dfrac{12}{25}.2=\dfrac{24}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(\Rightarrow2K=\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{43.45}\)
\(=\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\)
\(=\dfrac{1}{9}-\dfrac{1}{45}\)
\(=\dfrac{4}{45}\)
\(\Rightarrow K=\dfrac{4}{45}:2=\dfrac{2}{45}\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{5}+\dfrac{6}{5}-\dfrac{6}{8}+\dfrac{6}{8}-\dfrac{6}{11}+...+\dfrac{6}{47}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{150}{50}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\dfrac{144}{50}\)
\(M=\dfrac{144}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{5}{45}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\dfrac{4}{45}\)
\(K=\dfrac{2}{45}\)
sửa đề: phải là 14 chứ sao lại là 13 nhỉ?=))
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\) \(\left(x\ne0;x\ne-3\right)\)
\(\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}\right)\cdot3=\dfrac{101}{1540}\cdot3\)
\(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{308\left(x+3\right)}{1540\left(x+3\right)}-\dfrac{1540}{1540\left(x+3\right)}=\dfrac{303\left(x+3\right)}{1540\left(x+3\right)}\)
suyy ra
`308x+924-1540=303x+909`
`5x=1525`
`x=305(tm)`
\(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{13\cdot15}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{15}=\dfrac{2}{15}\)
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
Tính
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)
a)\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)
\(D=\dfrac{2}{3\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{11}{8\cdot19}+\dfrac{13}{19\cdot32}+\dfrac{25}{32\cdot57}+\dfrac{30}{57\cdot87}\)
Áp dụng công thức tổng quát \(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
Ta có:
\(D=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}+\dfrac{1}{57}-\dfrac{1}{87}\\ D=\dfrac{1}{3}-\dfrac{1}{87}\\ D=\dfrac{28}{87}\)
`# \text {Ryo}`
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}\\ =\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\\ =\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-\dfrac{1}{14}\\ =\dfrac{1}{2}-\dfrac{1}{14}\\ =\dfrac{7}{14}-\dfrac{1}{14}\\ =\dfrac{6}{14}\\ =\dfrac{3}{7}\)
3/7