Bài 1: Cho tam giác ABC vuông tại A có AB<AC. Gọi M là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E. a) Chứng minh AM=DE b) Chứng minh tứ giác DMCE là hình bình hành c) Gọi AH là đường cao của tam giác ABC ( H thuộc BC ). Chứng minh tứ giác DHME là hình thang cân và A đối xứng với H qua DE.
Mình đang cần gấp bài này sáng mai mình kiểm tra. Các bạn giúp mình nhé, cảm ơn các bạn nhiều.
a, Xét tứ giác DMEC có: \(\widehat{D}\) = \(\widehat{A}\) = \(\widehat{C}\) = 900
⇒ Tứ giác DMEC là hình chữ nhật
⇒ AM = DE
b, MD \(\perp\) AB; AB \(\perp\) AC ⇒ MD// AC
Xét tam giác: ABC có:
MD//AC; MB = MC ⇒ AD = DB (vì trong tam giác đường thằng đi qua trung điểm một cạnh và song song với cạnh thứ hai thì nó đi qua điểm của cạnh còn lại)
Chứng minh tương tự ta có: EA = EC
Xét tam giác ABC có: AD = DB
MB = MC
⇒ DM song song và bằng CE
⇒ DMCE là hình bình hành
c, Chứng minh tương tự ý b ta có
DE // BC
Xét tam giác vuông ABH vuông tại H; DB = DA ⇒ HD = DB = AD
ME = AD = DB (vì ADME là hình chữ nhật)
⇒ HD = ME
⇒ DMHE là hình thang cân.
d, DE//BC ⇒ DE \(\perp\) AH; DA = DH ⇒ DE là trung trực của AH ⇒
A đối xứng với H qua DE