tìm giá trị nhỏ nhất của các biểu thức sau
x2 - 2x + y2 - 4y - 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$
Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$
$\Leftrightarrow x=-\frac{1}{2}$
b)
$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$
$=(x-1)^2+(y-2)^2+2\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$
$\Leftrightarrow x=1; y=2$
\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)
x2 - 2x + y2 - 4y + 7 = (x2 - 2x + 1) + ( y2 - 4y + 4) + 2 = (x - 1)2 + (y - 2)2 + 2
Vì (x - 1)2 ≥ 0 \(\forall\)x
(y - 2)2 ≥ 0 \(\forall\)x
=> (x - 1)2 + (y - 2)2 ≥ 0 \(\forall\)x
=> (x - 1)2 + (y - 2)2 + 2 ≥ 2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy GTNN của x2 - 2x + y2 - 4y +7 = 2 khi x = 1; y = 2
Đặt \(A=x^2-2x+y^2-4y+7\)
\(\Rightarrow A=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0\forall x\); \(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x,y\)
hay \(A\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .
b) Ta có N = ( x + 2 y ) 2 + ( y – 2 ) 2 + ( x + 4 ) 2 – 120 ≥ - 120 .
Tìm được N min = -120 Û x = -4 và y = 2.
nè bạn Câu hỏi của Hương Linh - Toán lớp 8 - Học toán với OnlineMath
\(A=x^2-2x+y^2-4y-7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-12.\)
\(=\left(x-1\right)^2+\left(y-2\right)^2-12\)
Vì \(\left(x-1\right)^2+\left(y-2\right)^2\ge0\)nên \(\left(x-1\right)^2+\left(y-2\right)^2-12\ge-12\)
Vậy GTNN của A là -12 tại \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)